Tìm x, y bt: x>0, y>0 và x/y=2/5; x^2+y^2=29
Tìm x, y bt x>0, y>o và x/y=2/5;x\(^2\)+y\(^2\)=29
Tìm x, y bt: \(x>0,y>0\) và \(\frac{x}{y}=\frac{2}{5};x^2+y^2=29\)
mn giúp tôi đc ko??? Lm ơn
\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{25}=\frac{x^2+y^2}{4+25}=\frac{29}{29}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{4}=1\\\frac{y^2}{25}=1\end{cases}\Rightarrow\hept{\begin{cases}x^2=4\\y^2=25\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm2\\y=\pm5\end{cases}}}\)
cho x+y=1, x>0,y>0, Tìm GTNN của bt P=a^2/x+b^2 y ( với x;y là hằng số dương đã cho)
Đề như này pk em?
\(P=\dfrac{a^2}{x}+\dfrac{b^2}{y}\)
Áp dụng bđt Svac-xơ có:
\(P=\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)
Dấu = xảy ra <=>\(\dfrac{a}{x}=\dfrac{b}{y}\) và x+y=1
Ta có : \(\dfrac{a^2.1}{x}+\dfrac{b^2.1}{y}=\dfrac{a^2\left(x+y\right)}{x}+\dfrac{b^2\left(x+y\right)}{y}\) = \(a^2+\dfrac{a^2y}{x}+\dfrac{b^2x}{y}+b^2\) = \(\left(\dfrac{a^2y}{x}+\dfrac{b^2x}{y}\right)+a^2+b^2\)
Các số dương \(\dfrac{a^2y}{x}\) và \(\dfrac{b^2x}{y}\) có tích không đổi nên tổng của chung nhỏ nhất khi và chỉ khi
\(\dfrac{a^2y}{x}=\dfrac{b^2x}{y}\Leftrightarrow a^2y^2=b^2x^2\Leftrightarrow ay=bx\Leftrightarrow a\left(1-x\right)=bx\)
⇔ \(x=\dfrac{a}{a+b}\) ; \(y=\dfrac{b}{a+b}\)
Vậy GTNN của biểu thức \(\left(a+b\right)^2\) khi \(x=\dfrac{a}{a+b}\) và \(y=\dfrac{b}{a+b}\)
Cho x>0 y>0 và \(x+y\le1\) tìm GTNN của bt
\(Q=x^2+y^2+\frac{1}{x^2}+\frac{1}{\cdot y^2}\)
Tìm x,y,z bt:
( x- \(\frac{1}{3}\)) (y - \(\frac{1}{2}\)) ( z - 5) =0 và x + 2 = y+1 = z + 3
\(\left(x-\frac{1}{3}\right)\left(y-\frac{1}{2}\right)\left(z-5\right)=0.\)
\(\Rightarrow x-\frac{1}{3}=0\)hoặc \(y-\frac{1}{2}=0\)hoặc \(z-5=0\)
TH1: \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\Rightarrow\hept{\begin{cases}y=\frac{4}{3}\\z=-\frac{2}{3}\end{cases}}\)
Xét 2 trường hợp cpnf lại ta được ba bộ số x,y,z cần tìm
tìm x ,y bt (/ là giá trị tuyệt đối nhé)
a,/x-3/+/x+5/-8=0
b,/2x+1/+*2x-5/-4=0
c,/x-3/+/3x+4/+/2x-1/=8
d,/x-3y/ mũ 11 +(y+4) mũ 12=0
e,(x+y) mũ 2016 + 2017/y-1/ mũ 3 = 0
d,/x-y-5/+2015(y-3) mũ 2016=0
f,(x-1) mũ 2 + (y+3) mũ 4 = 0
g, 2(x-5) mũ 6 + 5[/2y-7/ mũ 5]=0
ch,/x=3y-1/+(3y-2) mũ 2016 =0
Nếu dc mọi người có thể chỉ rõ cho em cách giả dc ko ạ,lần sau có j em còn bt làm.Em cảm ơn ạ
tìm x,y bt |x-1|+(x-y-2)^2018=0
Y+Z+1/X = X+Y+2/Y =X+Y-3=1/X+Y+Z
2. TÌM X BT
1+2Y/18 = 1+4Y/24 = 1+6Y/6X
Tìm x,y bt: \(\left(x-13+y\right)^2+\left(x-6-y\right)^2=0.\)
HELP ME!
(x - 13 + y)2 + (x - 6 - y)2 ≥ 0 + 0 = 0
Vì dấu "=" xảy ra nên x - 13 + y = 0 và x - 6 - y = 0
x + y = 13 và x - y = 6
x = (13 - 6) : 2 = 3,5
y = 13 - 3,5 = 9,5
Vậy x = 3,5 và y = 9,5
(\(x\) - 13 + y)2 + (\(x\) - 6 - y)2 = 0
(\(x\) - 13 + y)2 ≥ 0 ∀ \(x;y\)
(\(x-6-y\))2 ≥ 0 ∀ \(x;y\)
⇒(\(x-13+y\))2 + (\(x\) - 6- y)2 = 0
⇔ \(\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x-6-y=0\\x-13+y+x-6-y=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}y=x-6\\2x=19\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{19}{2}-6\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{7}{2}\end{matrix}\right.\)
𝓥𝓲̀ \(\left(x-13+y\right)^2\ge0;\left(x-6-y\right)^2\ge0\)
\(\Rightarrow\left(x-13+y\right)^2+\left(x-6-y\right)^2\ge0\)
𝓓𝓪̂́𝓾 𝓫𝓪̆̀𝓷𝓰 𝔁𝓪̉𝔂 𝓻𝓪 𝓴𝓱𝓲 \(\left(x-13+y\right)^2=0;\left(x-6-y\right)^2=0\)
\(\Rightarrow\left(x-13+y\right)^2=0\) \(\Rightarrow\left(x-6-y\right)^2=0\)
\(x-13+y=0\) \(x-6-y=0\)
\(x+y=13\) \(x-y=6\)
\(\Rightarrow\)𝔁 𝓵𝓪̀ 1 𝓼𝓸̂́ 𝓵𝓸̛́𝓷 𝓱𝓸̛𝓷 𝔂 𝓫𝓸̛̉𝓲 𝓿𝓲̀ 𝓴𝓱𝓲 𝔁-𝔂 𝓴𝓮̂́𝓽 𝓺𝓾𝓪̉ 𝓵𝓪̀ 1 𝓼𝓸̂́ 𝓷𝓰𝓾𝔂𝓮̂𝓷 𝓭𝓾̛𝓸̛𝓷𝓰
\(\Rightarrow x=\left(13+6\right)\div2=9,5\)
\(\Rightarrow y=13-9,5=3,5\)
𝓥𝓪̣̂𝔂 𝔁=9,5 𝓿𝓪̀ 𝔂=3,5