a) Chứng tỏ aaaaaa chia hết cho 7
b) Chứng tỏ abcabc chia hết cho 11
c) Chứng tỏ aaa chia hết cho 37
d)Chứng tỏ ab + ab chia hết cho 11
a)aaaaa=a*111111=a*15873*7(chia hết cho 7)
b)abcabc=abc*1001=abc*91*11(chia hết cho 11)
c)aaa=a*111=a*3*37(chia hết cho 37)
d)ab+ab=10a+b+10a+b=20a+b(không có dấu hiệu nào chia hết cho 11, chứng tỏ sai đề!)
Câu 1:tìm số nguyên n sao cho 4n-5 chia hết cho 2n-1
b, tính A=1+10^2+10^4+10^6+....+10^2016
c, chứng minh rằng nếu:(ab+cd+eg)chia hết cho 11 thì abcdeg chia hết cho 11
a) Chứng tỏ abba là bội của 11
b) Chứng tỏ ababab là bội của 3
c) Nếu cd chia hết cho 4 thì abcd chia hết cho 4
d) Nếu abcd chia hết cho 4 thì cd chia hết cho 4
a) abba = 1001a + 110b = 11.(91a + 10b) chia hết cho 11
\(\Rightarrow\) abba là bội của 11
b) ababab = ab.10101 = ab.3367.3 chia hết cho 3
\(\Rightarrow\) ababab là bội của 3
c) abcd = ab.100 + cd
Ta có ab.100 chia hết cho 4 (vì 100 chia hết cho 4)
cd chia hết cho 4
\(\Rightarrow\) ab.100 + cd chia hết cho 4
\(\Rightarrow\) abcd chia hết cho 4
d) abcd = ab.100 + cd
Ta có abcd chia hết cho 4
ab.100 chia hết cho 4 (vì 100 chia hết cho 4)
\(\Rightarrow\) cd chia hết cho 4
Chứng tỏ rằng số có dạng abcabc lúc nào cũng chia hết cho 11, chia hết cho 91.
Cho S=5+52+53+.......+52012.Chứng tỏ S chia hết cho 65
Tìm số tự nhiên nhỏ nhất chia cho 11dư 6 chia cho 4 dư 1 và chia cho 19 dư 11
Chứng tỏ A=10n+18n-1 chia hết cho 27 (với n là số tự nhiên)
c/m: 10^n + 18n - 1 chia hết cho 27
10^n + 18n - 1= (10^n - 1) + 18n
10^n -1: vs n=2 10^2-1=99 (2 chữ số 9)
vs n=3 10^3-1=999 (3 chữ số 9)
10^n -1=99...9(n chữ số 9)
10^n -1 - 18n=99...9 + 18n
=9(11...1 + 2n) (11....1 có n chữ số 1)
=[9x3(11...1 + 2n)]/3 (Nhân 3 rồi chia cho 3)
=27[(11...1 + 2n)]/3]
Vậy ta cần chứng minh 11...1 + 2n chia hết cho 3 thì biểu thức trên sẽ chia hết cho 27
dấu hiệu của 1 số chia hết cho 3 là tổng các số trong số đó sẽ chia hết cho 3
Xét số 11...1=1+1+...+1 (n chữ số 1)
vs n=2 =>1+1=2=n
n=3 =>1+1+1=3=n
vậy tổng các chữ số của 11...1=1+1+...+1=n (n chữ số 1)
=>11...1+2n có tổng các chữ số =n+2n=3n hiển nhiên chia hết cho 3 (đpcm)
S=(5+52+53+54)+(55+56+57+58)+...........+(52009+52010+52011+52012)
=780+54(5+52+53+54)+...........+52008(5+52+53+54)
=65*12 + 54*65*12 + .......... + 52008*65*12
=65*12(1+54+...+52008) chia hết cho 65
=> S chia hết cho 65
chứng tỏ abcd chia hết cho 99 thì (ab+cd) chia hết 99
toán lớp 6
các bạn giải giúp mình !
_ _
Chứng tỏ ab + ba chia hết cho 11
Ta có:
\(\overline{ab}+\overline{ba}\)
\(=10a+b+10b+a\)
\(=11a+11b\)
Ta thấy: \(11a⋮11;11b⋮11\)
\(\Rightarrow\overline{ab}+\overline{bc}⋮11\)
Ta có :
ab - ba
= 10a - b - 10b + a
= 11a + 11b
Ta thấy : 11a : 11 ; 11b : 11
=> ab + bc : 11
Chúc học giỏi
Chứng tỏ ab+ba chia hết cho 11
ab + ba
= 10a + b + 10b + a
= 11a + 11b
= 11 ( a + b ) chia hết cho 11 =>ĐPCM
a)cho biết 2a + b chia hết cho 6 chứng tỏ rằng 6a +3b chia het cho 6 . Diều ngược lại có đúng ko?
b)cho biết 2a +3b chia hết cho 15,chứng tỏ rằng 9a +6b chia hết cho 15?