Tìm 2 số tự nhiên x và y biết x +y =320 và ƯCLN (x;y)=32
Tìm hai số tự nhiên x ,y biết x + y=12 và ƯCLN(x,y)=5
Tìm hai số tự nhiên x,y biết x+y=32 và ƯCLN(x,y)=8
Ta có : \(x=5x',y=5y'\)trong đó a' và b' là hai số nguyên tố cùng nhau
\(x+y=12\Rightarrow5\left(x'+y'\right)=12\Rightarrow x'+y'=12:5=2,4\)
Giả sử \(x'\ge y'\)thì x' = 2,3,y' = 1 hoặc x' = -2,6 , y = 5 => x = \(5\cdot2,3=11,5\)
Không thỏa mãn điều kiện vì 12 không chia hết cho 5
Ta có : \(x=8x',y=8y'\)(như trên)
Có \(x+y=32\Rightarrow8\left(x'+y'\right)=32\Rightarrow x'+y'=4\)
Giả sử \(x'\ge y'\)thì x' = 3 , y' = 1 hoặc x' = 1,y' = 3 => \(x=8\cdot3=24,y=8\cdot1=8\)hoặc \(x=8\cdot1=8,y=8\cdot3=24\)
Vậy \(\left(x,y\right)\in\left\{\left(24,8\right);\left(8,24\right)\right\}\)
á đù được của ló đấy
Tìm 2 số tự nhiên x và y biết x+y=20 và ƯCLN của x và y bằng 5
a) Tìm hai số tự nhiên x, y biết x + y = 12 và ƯCLN(x;y) = 5
b) Tìm hai số tự nhiên x, y biết x + y = 32 và ƯCLN(x;y) = 8
a) Tìm hai số tự nhiên x, y biết x + y = 12 và ƯCLN(x;y) = 5
b) Tìm hai số tự nhiên x, y biết x + y = 32 và ƯCLN(x;y) = 8
a)Vì ƯCLN(x;y) = 5
=> \(\hept{\begin{cases}x=5k\\y=5t\end{cases}\left(k;t\inℕ^∗\right)}\)
Lại có : x + y = 12
<=> 5k + 5t = 12
=> 5(k + t) = 12
=> k + t = 2,4
mà \(k;t\inℕ^∗\)
=> \(k;t\in\varnothing\)
=> x ; y \(\in\varnothing\)
b) Vì ƯCLN(x;y) = 8
=> \(\hept{\begin{cases}x=8k\\y=8t\end{cases}\left(k;t\inℕ^∗\right)}\)
Lại có x + y = 32
<=> 8k + 8t = 32
=> k + t = 4
mà \(k;t\inℕ^∗\)
Lập bảng xét các trường hợp :
k | 1 | 3 | 2 |
t | 3 | 1 | 2 |
x | 8 | 24 | 16 (loại) |
y | 24 | 8 | 16 (loại) |
Vậy các cặp (x;y) thỏa mãn là : (24 ; 8); (8;24)
a) Tìm hai số tự nhiên x, y biết x + y = 12 và ƯCLN(x;y) = 5
b) Tìm hai số tự nhiên x, y biết x + y = 32 và ƯCLN(x;y) = 8
a) Tìm hai số tự nhiên x, y biết x + y = 12 và ƯCLN(x;y) = 5
=) x và y có số tận cùng là 0 hoặc 5
=) Ta có : 12 = 7 + 5 ; 5 + 7 ; 12 + 0 ; 0 + 12
vậy không có TH x và y
Tìm số tự nhiên x;y biết:
x+y=35 và ƯCLN (x;y)=7
vì ƯCLN(\(x\); y) = 7 nên \(x\) = 7.d; y = 7.k; d; k \(\in\) N; (d; k) = 1
Theo bài ra ta có: 7d + 7k = 35
⇒ 7.(d + k) = 35
d + k = 35: 7
d + k = 5
Lập bảng ta có:
k+d | 5 | 5 | 5 | 5 |
k | 1 | 2 | 3 | 4 |
d | 4 | 3 | 2 | 1 |
Theo bảng trên ta có
(k; d) = (1; 4); (2; 3); (3; 2); (4; 1)
Lập bảng ta có:
d | 1 | 2 | 3 | 4 |
\(x\) = 7.d | 7 | 14 | 21 | 28 |
k | 4 | 3 | 2 | 1 |
y = 7.k | 28 | 21 | 14 | 7 |
Theo bảng trên ta có:
các cặp số \(x\); y thỏa mãn đề bài là:
(\(x\); y) = (7; 28); (14; 21); (21; 14); (28; 7)
Tìm 2 số tự nhiên X, Y biết:
X+Y=20 và ƯCLN (X, Y)=5
Do UCLN là 5 nên a, b chia hết cho 5 => tận cùng là 0 hoặc 5
Ta có 20 = 15 + 5 = 18 + 2=19+1=17+3=16+4=14+6=13+7=12+8=11+9
=> 2 số a và b là 15 và 5 hoặc 5 và 15
15 và 5
a: Tìm số tự nhiên x sao cho x+15 là bội của x+3
b:tìm các số nguyên x,y sao cho {x+1}.{y-2}=3
c:tìm các số nguyên x sao cho [x+2].[y-1]=2
g:tìm 2 số tự nhiễn,y biết x+y=12 va ƯCLN[x,y]=5
h:tim 2 số tự nhiên x,y biết x+y=32 và ƯCLN=[x,y]=8
a) x+15 là bội của x+3
\(\Rightarrow\)x+15\(⋮\)x+3
\(\Rightarrow\)x+3+12\(⋮\)x+3
x+3\(⋮\)x+3
\(\Rightarrow\)12\(⋮\)x+3
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
\(\Rightarrow x\in\left\{-4;-2;-5;-1;-6;0;-7;1;-15;9\right\}\)
Vậy x\(\in\){-4;-2;-5;-1;-6;0;-7;1;-15;9}
b) (x+1).(y-2)=3
\(\Rightarrow\)x+1 và y-2 thuộc Ư(3)={1;-1;3;-3}
Có :
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
y+2 | 3 | -3 | 1 | -1 |
y | 1 | -5 | -1 | -3 |
Vậy (x;y)\(\in\){(0;1);(-2;-5);(2;-1);(-4;-3)}
Câu c tương tự câu b
g) Ta có : (x,y)=5
\(\Rightarrow\hept{\begin{cases}x⋮5\\y⋮5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=5m\\y=5n\\\left(m,n\right)=1\end{cases}}\)
Mà x+y=12
\(\Rightarrow\)5m+5n=12
\(\Rightarrow\)5(m+n)=12
\(\Rightarrow\)m+n=\(\frac{12}{5}\)
Bạn có thể xem lại đề được không ạ? Vì đến đây 12 không chia hết cho 5 nhé! Phần h bạn nên viết lại đề vì ƯCLN=[x,y]=8 tớ không hiểu lắm...
Ehhhxjeiigcjivjfibhfjfjidifofidbgfjcufychcnl Ochocinco and the new year has a nice 👌👍✨👏🙂that is the same thing about this place of the year for hiiepj
tìm 2 số tự nhiên a x biết
a. ƯCLN(x,y)=20 và xy=420
b. ƯCLN(x;y)=5 va x+y=20
x = 20.m ; y = 20.n ; ƯCLN (m,n) = 1 ; m,n thuộc N*
20.m.20.n = 420
m,n = 420 : 400 => m,n không có giá trị thỏa mãn
=> Vậy x,y không có giá trị thỏa mãn.
. k cho tớ hay không là tùy cậu TvT