Những câu hỏi liên quan
DT
Xem chi tiết
MQ
Xem chi tiết
HG
21 tháng 7 2015 lúc 20:29

Tổng các số x là:

-19 + (-18) + (-17) +.....+ 17 + 18

= (-18) + 18 + (-17) + 17+.....+(-1)+1+(-19)

= 0 + 0 +....+ 0 +(-19)

= -19

Bình luận (0)
H24
Xem chi tiết
NT
7 tháng 5 2016 lúc 18:12
Bài này nhiều ước lắm bạn ơi.
Bình luận (0)
LD
7 tháng 5 2016 lúc 18:12

 x = ko có số nào

Bình luận (0)
H24
7 tháng 5 2016 lúc 18:44

Phân tích thừa số nguyên tố: \(1245668=2^2.239.1303\)

Sau đó tính: \(\frac{2^{2+1}-1}{2-1}.\frac{239^{1+1}-1}{239-1}.\frac{1303^{1+1}-1}{1303-1}\) là sẽ ra tổng.

Bình luận (0)
H24
Xem chi tiết
DD
12 tháng 1 2019 lúc 23:52

🤦‍♀️🤦‍♀️

Bình luận (0)
LH
Xem chi tiết
NH
Xem chi tiết
TT
11 tháng 12 2016 lúc 17:33

x bằng 2, y bằng 7

tổng 2 số bằng 9

Bình luận (0)
H24
Xem chi tiết
PN
28 tháng 7 2016 lúc 13:42

\(Q=\left(1+\frac{\alpha}{x}\right)\left(1+\frac{\alpha}{y}\right)\left(1+\frac{\alpha}{z}\right)=\left(\frac{\alpha+x}{x}\right)\left(\frac{\alpha+y}{y}\right)\left(\frac{\alpha+z}{z}\right)\)

Mà  \(\alpha=x+y+z\)  (theo gt) nên ta có thể viết  \(Q\)  như sau:

\(Q=\left(\frac{2x+y+z}{x}\right)\left(\frac{x+2y+z}{y}\right)\left(\frac{x+y+2z}{z}\right)=\left(2+\frac{y+z}{x}\right)\left(2+\frac{x+z}{y}\right)\left(2+\frac{x+y}{z}\right)\)

Đặt  \(a=\frac{y+z}{x};\)  \(b=\frac{x+z}{y};\)  và  \(c=\frac{x+y}{z}\)  \(\Rightarrow\)  \(a,b,c>0\)

Khi đó, biểu thức  \(Q\)  được biểu diễn theo ba biến  \(a,b,c\)  như sau:

\(Q=\left(2+a\right)\left(2+b\right)\left(2+c\right)=4\left(a+b+c\right)+2\left(ab+bc+ca\right)+abc+8\)

\(\Rightarrow\)  \(Q-8=4\left(a+b+c\right)+2\left(ab+bc+ca\right)+abc\)

Mặt khác, ta lại có:

\(a+b+c=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\)

nên   \(a+b+c+3=\frac{y+z}{x}+1+\frac{x+z}{y}+1+\frac{x+y}{z}+1\)

\(\Rightarrow\) \(a+b+c+3=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Lại có:   \(\hept{\begin{cases}x+y+z\ge3\sqrt[3]{xyz}\text{ (1)}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\text{ (2)}\end{cases}}\)   (theo bđt  \(Cauchy\)  lần lượt cho hai bộ số gồm các số không âm)

Nhân hai bđt  \(\left(1\right);\)  và  \(\left(2\right)\)  vế theo vế, ta được bđt mới là:

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

Theo đó,  \(a+b+c+3\ge9\)  tức là  \(a+b+c\ge6\)

\(\Rightarrow\)  \(4\left(a+b+c\right)\ge24\)  \(\left(\alpha\right)\)

Bên cạnh đó, ta cũng sẽ chứng minh  \(abc\ge8\)  \(\left(\beta\right)\)

Thật vậy, ta đưa vế trái bđt cần chứng minh thành một biểu thức mới.

\(VT\left(\beta\right)=abc=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}}{xyz}=\frac{8xyz}{xyz}=8=VP\left(\beta\right)\)

Vậy, bđt  \(\left(\beta\right)\)  được chứng minh.

Từ đó, ta có thể rút ra được một bđt mới.

\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\ge3\sqrt[3]{8^2}=12\) (theo cách dẫn trên)

\(\Rightarrow\) \(2\left(ab+bc+ca\right)\ge24\)  \(\left(\gamma\right)\)

Cộng từng vế 3 bđt  \(\left(\alpha\right);\)  \(\left(\beta\right)\)  và  \(\left(\gamma\right)\), ta được:

\(Q-8\ge24+8+24=56\)

Do đó,  \(Q\ge64\)

Dấu   \("="\)  xảy ra khi và chỉ khi  \(a=b=c\)  \(\Leftrightarrow\)  \(x=y=z=2\)

Vậy,  \(Q_{min}=64\)  khi  \(\alpha=6\)

Bình luận (0)
TA
Xem chi tiết
DB
Xem chi tiết
PA
7 tháng 1 2017 lúc 11:17

Ta co:

       x.(4+ x) = -3

=>  x.4+x.x  = -3

=>  2.x(2+1) = -3

=> 2.x.3      =-3

=> 2.x        =-3:3

=>2.x         =-1        

=>x            =-1:2

Vay x = -1:2

Bình luận (0)