tim x biet
a) [x-3].[x+2]=0
b) [x+1] . x < 0
a, Cho F(x) = a x+b . Tim a,b biet f(0) = 3 va F(2) =-1
b, Cho F(x) =a x+ b. Tim a,b biet F(1) = -1 va F(-2) = 8
c, Cho F(x) =a x +b .tim a,b biet F(0) = 1 va F(-2) = -9
Tim x
a, x\(^2\)-7x+12=0
b, x(x-4)-3(4-x)=0
a)Ta có:
\(x^2-7x+12=0\)
\(\Leftrightarrow x^2-3x-4x+12=0\)
\(\Leftrightarrow x\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)
b) Ta có:
\(x\left(x-4\right)-3\left(4-x\right)=0\)
\(\Leftrightarrow x\left(x-4\right)+3\left(x-4\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
tim x dua vao quan he uoc boi:
tim so tu nhien x sao cho x-1 la uoc cua 12
tim so tu nhien x sao cho 2x+1 la uoc cua 28
tim so tu nhien x sao cho x+15 la boi cua x+3
tim cac so nguyen x,y sao cho (x+1)(y-2)=3
tim so nguyen x sao cho(x+2).(y-1)=2
tim so nguyen to x vua la uoc cua 275 vua la uoc cua 180
tim so nguyen to x,y biet x+y=12 va UCLL (x:y)=5
tim so tu nhien x,y biet x+y=32 va UCLL (x:y)=8
tim so tu nhien x biet x chia het cho10; xchia het cho12; x chia het cho15 va 100<x<150
tim so x nho nhat khac 0b biet x chia het cho 24 va 30
40 chia het cho x . 56 chia het cho x va x>6
tim so nguyen a, b biet a lon hon 0 va a.(b-2)=3
tim x,y biet (x-2).(y+1)=23
*) Ta có a(b-2)=3
Vì a,b là số nguyên => a,b-2 thuộc Ư(3)={-3;-1;1;3}
Vì a>0 => a={1;3}
Ta có bảng
a | 1 | 3 |
b-2 | 3 | 1 |
b | 5 | 3 |
b) (x-2)(y+1)=23
=> x-2;y+1 thuộc Ư(23)={-23;-1;1;23}
Ta có bảng
x-2 | -23 | -1 | 1 | 23 |
x | -21 | 1 | 3 | 25 |
y+1 | -1 | -23 | 23 | 1 |
y | -2 | -24 | 22 | 0 |
1. \(a\left(b-2\right)=3\)
Ta có : \(3=\orbr{\begin{cases}3\cdot1\\-3\cdot\left(-1\right)\end{cases}}\)
* a = 3 ; b - 2 = 1 => b = 3
* a = 1 ; b - 2 = 3 => b = 5
* a = -1 ; b - 2 = -3 => b = -1
* a = -3 ; b - 2 = -1 => b = 1
2. \(\left(x-2\right)\left(y+1\right)=23\)
Ta có : \(23=\orbr{\begin{cases}23\cdot1\\-23\cdot\left(-1\right)\end{cases}}\)
* x - 2 = 23 ; y + 1 = 1 => x = 25 ; y = 0
* x - 2 = 1 ; y + 1 = 23 => x = 3 ; 22
* x - 2 = -23 ; y + 1 = -1 => x = -21 ; y = -2
* x - 2 = -1 ; y + 1 = -23 => x = 1 ; y = -24
a.(b-2)=3
Vì a;b là số nguyên => a;b-2 là số nguyên
=> a;b-2 E Ư(3)
Mà a > 0 => a E {1;3}
Ta có bảng:
a | 1 | 3 |
b-2 | 3 | 1 |
b | 5 | 3 |
Vậy cặp số nguyên (a;b) cần tìm là: (1;5) ; (3;3) .
(x-2)(y+1)=23
Vì x;y là số nguyên => x-2;y+1 là số nguyên
=> x-2;y+1 E Ư(23)
Ta có bảng:
x-2 | 1 | 23 | -1 | -23 |
y+1 | 23 | 1 | -23 | -1 |
x | 3 | 25 | 1 | -21 |
y | 22 | 0 | -24 | -2 |
Vậy cặp số nguyên (x;y) cần tìm là: (3;22) ; (25;0) ; (1;-24) ; (-21;-2) .
tim x thuoc Q , biet :
a, (x+1).(x+2)<0
b, (x-2).(x+2/3)>0
a/ Áp dụng tính chất phân phối ta được:
\(\left(x+1\right)\left(x+2\right)\)
\(=x^2+x+2x+2\)
\(=x^2+2x+1^2+x+1\)
\(=\left(x+1\right)^2+x+1\)
Mà \(x< \left(x+1\right)^2\)
\(\Rightarrow\left(x+1\right)^2+x+1>0\)
=> Biểu thức trên lớn hơn 0
=> Không có kết quả (Sai đề)
b/ Áp dụng tính chất phân phối ta được:
\(\left(x-2\right)\left(x+\frac{2}{3}\right)\)
\(=x^2-2x+\frac{2}{3}x-\frac{4}{3}\)
\(=x^2-2x+1+\frac{2}{3}x-\frac{1}{3}\)
\(=\left(x-1\right)^2+\frac{2}{3}x-\frac{1}{3}\)
\(=\left(x-1\right)^2+\frac{1}{3}\left(2x-1\right)\)
Mà \(\left(x-1\right)^2\ge0\)
=> Để thỏa mãn đề bài cần \(\frac{1}{3}\left(2x-1\right)>0\)
=> \(2x>1\Rightarrow x>\frac{1}{2}\)
a ) \(\left(x+1\right).\left(x+2\right)< 0\)
\(=x.\left(x+2\right)+1.\left(x+2\right)< 0\)
\(=x.\left(x-2\right)+\left(x+2\right)< 0\)
\(\Rightarrow x\in Z\)
\(\Rightarrow x>2\)
b ) \(\left(x-2\right).\left(x+\frac{2}{3}\right)\)
\(=x.\left(x+\frac{2}{3}\right)-2.\left(x+\frac{2}{3}\right)\)
\(=x+\frac{2}{3}\) = Số nguyên
Nên x thuộc phân số
bài 1: tim x, biết
a,x.(x - 2) + x - 2 = 0
b,x3 + x + x + 1 = 0
c,5x.(x - 4) = 2x + 8
d,(5x - 4)2 - 49x2 = 0
a,x(x-2)+x-2=0
⇔ (x-2)(x+1)=0
⇔ x=2;x=-1
b,x3+x2+x+1=0
⇔ x2(x+1)+x+1=0
⇔ (x+1)(x2+1)=0
⇔ x=-1
1) Tim a, b thuoc Q biet: a-b=2(a+b)=a:b
2) Tim x thuoc Q sao cho: (x-1)(x+3)<0
TIM X BIET:
A/ (X-3).(X-1/2)=0
B/ X2-2X=0
C/(3X-1).(X2+1)=0
D/ (X-2).(X+1)=0
\(a)\)\(\left(x-3\right)\left(x-\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-3=0\\x-\frac{1}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}}\)
Vậy \(x=3\) hoặc \(x=\frac{1}{2}\)
\(b)\) \(x^2-2x=0\)
\(\Leftrightarrow\)\(x\left(x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
Vậy \(x=0\) hoặc \(x=2\)
\(c)\) \(\left(3x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x-1=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=1\\x^2=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x\in\left\{\varnothing\right\}\end{cases}}}\)
Vậy \(x=\frac{1}{3}\)
\(d)\) \(\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy \(x=-1\) hoặc \(x=2\)
Chúc bạn học tốt ~