GPT nghiệm nguyên:
1) 2xy+x+y=21
2)x^2+x+6=y^2
Gpt nghiệm nguyên
a, \(2xy-6x-5y=18\)
b,\(y^2=x^2\left(y+2\right)+1\)
c,\(2xy-6=y-x\)
Gpt nghiệm nguyên
a, \(2xy-6x-5y=18\)
b,\(y^2=x^2\left(y+2\right)+1\)
c,\(2xy-6=y-x\)
Gpt nghiệm nguyên:
a) \(x^2+x+1=2xy+y\)
b) \(x^4+x^2-y^2+y+10=0\)
GPT nguyên 2xy2+x+y+1=x2+2y2+xy
Ta có
\(2xy^2+x+y+1-x^2-2y^2-xy=0\)
<=>\(\left(2xy^2-2y^2\right)+\left(y-xy\right)+\left(x-x^2\right)=-1\)
<=>\(2y^2\left(x-1\right)-y\left(x-1\right)-x\left(x-1\right)=-1\)
<=>\(\left(2y^2-y-x\right)\left(x-1\right)=-1\)
đến đây tự giải tiếp nha lắc
Tick nha
GPT nghiệm nguyên x2+y3=y6
x2 = y3(y-1)(y+1)
=>x2 = y2y(y-1) (y+1)
y(y-1)(y+1) là tich 3 số liên tiếp và là số chính phương .
không có 3 số liên tiếp khác không là số chính phương
=> y =0 hoặc y =1 hoặc y =-1
=> x =0
Vậy (x;y) = (0;0);(0;1);(0;-1)
Nguyễn Quốc Khánh uk
Nguyễn Nhật Minh lại sai oi
GPT nghiệm nguyên:
\(x^2+y^2-2x+y=9\)
\(x^2+y^2-2x+y=9\)
\(\Rightarrow-2x^3-y^2=9\)
\(\Rightarrow-2x^{3-1}-y^2=3^2\)
\(x^2+y^2-2x+y=9\)
\(\Leftrightarrow4x^2+4y^2-8x+4y=36\)
\(\Leftrightarrow4x^2-8x+4+4y^2+4y+1=41\)
\(\Leftrightarrow\left(2x-2\right)^2+\left(2y+1\right)^2=41\)
Vì \(\left(2x-2\right)^2\ge0\) với \(\forall x\)
\(\Rightarrow\left(2y+1\right)^2\le41\)
Mà \(\left(2y+1\right)^2\) là số lẻ \(\Rightarrow\left(2y+1\right)^2\in\left\{1;9;25\right\}\)
\(\Rightarrow y\in\left\{0;1;2;-1;-2;-3\right\}\)
Tìm được y rồi thì thay vào tìm x nhé.
\(xy^2-2xy+x+y^2=6\) giải ptr nghiệm nguyên sau bất x,y thuộc Z
\(xy^2\) - \(2xy\) + \(x\) + \(y^2\) = 6
\(x\)( \(y^2\) - \(2y\) + 1 ) + \(y^2\) - 1 = 5
\(x\) ( \(y-1\) ) 2 + ( \(y-1\))(\(y+1\)) = 5
(\(y-1\))( \(xy-x\) + y + 1) = 5
Ư(5) ={ -5; -1; 1; 5)
ta có bảng :
y- 1 | -5 | -1 | 1 | 5 |
y | -4 | 0 | 2 | 6 |
xy-x+y+1 | -1 | -5 | 5 | 1 |
x | -2/5 | 6 | 2 | -6/5 |
Vì x, y \(\in\) Z nên (x, y ) = ( 0; 6); ( 2; 2)
GPT nghiệm nguyên
1, \(x^2-xy+y^2-4=0\)
2,\(5y^2+8y^2=20412\)
1.
PT $\Leftrightarrow 4x^2-4xy+4y^2-16=0$
$\Leftrightarrow (2x-y)^2+3y^2=16$
$\Rightarrow 3y^2=16-(2x-y)^2\leq 16$
$\Rightarrow y^2\leq \frac{16}{3}< 9$
$\Rightarrow -3< y< 3$
Mà $y$ nguyên nên $y\in \left\{-2;-1;0;1;2\right\}$
Thay vô ta tìm được:
$(x,y)=(-2, -2), (0,-2), (0,2), (2,0), (-2,0)$
2.
PT $\Leftrightarrow 13y^2=20412$
$\Leftrightarrow y^2=\frac{20412}{13}\not\in\mathbb{N}$ (vô lý)
giải ptr nghiệm nguyên sau \(xy^2-2xy+x+y^2=6\)
\(xy^2-2xy+x+y^2=6\Leftrightarrow x\left(y^2-2y+1\right)+y^2-1=5\)
\(\Leftrightarrow x\left(y-1\right)^2+\left(y-1\right)\left(y+1\right)=5\)
\(\Leftrightarrow\left(y-1\right)\left(xy-x+y+1\right)=5\)
\(Ư\left(5\right)=\left(-5;-1;1;5\right)\)
y-1 | -5 | -1 | 1 | 5 |
y | -4 | 0 | 2 | 6 |
xy-x+y+1 | -1 | -5 | 5 | 1 |
x | -2/5 | 6 | 2 | -6/5 |
Vì \(x;y\in Z\Rightarrow\left[{}\begin{matrix}\left(x;y\right)=\left(6;0\right)\\\left(x;y\right)=\left(2;2\right)\end{matrix}\right. \)