Những câu hỏi liên quan
LY
Xem chi tiết
LK
Xem chi tiết
NB
Xem chi tiết
TN
19 tháng 6 2016 lúc 16:01

Lần sau bạn vào fx viết đề cho rõ nhé :))

\(Gt\Leftrightarrow a^2+b^2+ab=c^2+d^2+cd\)

Bình 2 vế đc:

\(a^4+b^4+2a^3b+2ab^3+3a^2b^2\)\(=c^4+d^4+2c^3d+2cd^3+3c^2d^2\)

\(\Leftrightarrow2\left(a^4+b^4+2a^3b+2ab^3+3a^2b^2\right)\)\(=2\left(c^4+d^4+2c^3d+2cd^3+3c^2d^2\right)\)

\(\Leftrightarrow a^4+b^4+\left(a+b\right)^4=c^4+d^4+\left(c+d\right)^4\)

Bình luận (0)
NT
Xem chi tiết
TA
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
TH
1 tháng 6 2021 lúc 6:36

b) Áp dụng bđt Holder ta có:

\(\left(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\right)\left(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\right)\left(a^2\left(b+c\right)^2+b^2\left(c+a\right)^2+c^2\left(a+b\right)^2\right)\ge\left(a^2+b^2+c^2\right)^3\)

Lại có \(a^2\left(b+c\right)^2+b^2\left(c+a\right)^2+c^2\left(a+b\right)^2\le2a^2\left(b^2+c^2\right)+2b^2\left(c^2+a^2\right)+2c^2\left(a^2+b^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\sqrt{\dfrac{\left(a^2+b^2+c^2\right)^3}{4\left(a^2b^2+b^2c^2+c^2a^2\right)}}\).

Ta chỉ cần chứng minh: \(\dfrac{\sqrt[4]{27\left(a^4+b^4+c^4\right)}}{2}\le\sqrt{\dfrac{\left(a^2+b^2+c^2\right)^3}{4\left(a^2b^2+b^2c^2+c^2a^2\right)}}\Leftrightarrow27\left(a^4+b^4+c^4\right)\left(a^2b^2+b^2c^2+c^2a^2\right)^2\le\left(a^2+b^2+c^2\right)^3\).

Áp dụng bđt AM - GM ta có \(27\left(a^4+b^4+c^4\right)\left(a^2b^2+b^2c^2+c^2a^2\right)^2\le\left(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\right)=\left(a^2+b^2+c^2\right)^2\).

Vậy ta có đpcm.

Bình luận (1)
TH
1 tháng 6 2021 lúc 6:51

a) Câu này cũng tương tự: Áp dụng bđt Holder ta có:

\(\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)\left(a^2b^2+b^2c^2+c^2a^2\right)\ge\left(a^2+b^2+c^2\right)^3\).

Đến đây làm tương tự là ok

Bình luận (0)
TP
Xem chi tiết
HM
Xem chi tiết
TN
5 tháng 7 2017 lúc 10:05

Bài 1:

\(a^2+b^2+c^2=16\Rightarrow\left(a+b+c\right)^2-2ab-2bc-2ac=16\)\(\Leftrightarrow-2\left(ab+bc+ac\right)=16\Rightarrow ab+bc+ac=-8\)\(\Rightarrow\left(ab+bc+ac\right)^2=64\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=64\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=64\)

\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=64\)

Ta có:

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)\(=16^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=256-2.64=128\)

Bình luận (2)
TN
27 tháng 2 2018 lúc 8:05

1. Ta có $a + b + c = 0$

\(\Rightarrow\) $( a + b + c)^2 = 0$

\(\Leftrightarrow\) $a^2+b^2 +c^2 +2ab+2bc+2ac = 0
\(\Leftrightarrow\) $a^2 + b^2 + c^2 = -2(ab+bc+ac)$

Thay $a^2 + b^2 + c^2 = 2$

\(\Rightarrow\)$2 = -2(ab+bc+ac)$ \(\Rightarrow\) $ab + bc +ac = -1 $
Ta có: $(a^2+b^2+c^2) = 2$

\(\Leftrightarrow\) $(a^2+b^2+c^2)^2 = 4$

\(\Leftrightarrow\)$a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2 = 4$

\(\Leftrightarrow\) $a^4+b^4+c^4 + 2(a^b^2+b^2c^2+a^2c^2) = 4$ (1)
Do $2(ab+bc+ac)^2 = 2(a^2b^2+b^2c^2+a^2c^2 + 2a^2bc+2ab^2c+2abc^2)$ (2)
Từ (1)(2) => $a^4+b^4+c^4+2(ab+bc+ac)^2 - 4abc(a+b+c) = 4$(3)
Thay $(ab+bc+ac) = -1$ và $a+b+c = 0$ (4)
Từ (3)(4) => $a^4 + b^4 + c^4 +2(-1)^2 -4abc.(0) = 4 $
<=> $a^4 + b^4 + c^4 + 2 = 4 => a^4 + b^4 + c^4 = 2 $

Bình luận (0)
DK
Xem chi tiết
H24
22 tháng 7 2018 lúc 8:33

cho bạn nè: https://olm.vn/hoi-dap/question/108981.html

vào đó mà xem nha...

Bình luận (0)
OO
22 tháng 7 2018 lúc 8:46

Từ a+b+c=0 có b+c =-a 
Suy ra (b+c)^2 = (-a)^2 hay b^2 + c^2 +2bc = a^2 
hay b^2 + c^2 -a^2 = -2bc 

Suy ra (b^2 + c^2 - a^2)^2 = (-2bc)^2 
<=> b^4 + c^4 + a^4 +2b^2.c^2 - 2a^2.b^2 - 2a^2.c^2 = 4b^2.c^2 
<=> a^4 + b^4 + c^4 = 2a^2.b^2 + 2b^2.c^2 + 2c^2.a^2 
<=> 2(a^4 + b^4 + c^4) =a^4 + b^4 + c^4 + 2a^2.b^2 + 2b^2.c^2 + 2c^2.a^2 
<=> 2(a^4 + b^4 + c^4 ) =(a^2 + b^2 + c^2): Đpcm

Bình luận (0)
ST
22 tháng 7 2018 lúc 8:53

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ca\right)\right]^2\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\) (vì a+b+c=0)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\) (đpcm)

Bình luận (0)