Những câu hỏi liên quan
NM
Xem chi tiết
HT
19 tháng 6 2016 lúc 8:47

Có \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}=+....+\frac{1}{99}-\frac{1}{100}\)

\(=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

=> \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right):\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=1\)

Bình luận (0)
TD
Xem chi tiết
EM
10 tháng 5 2016 lúc 12:57

B = 1/1x2 + 1/3x4 + ... + 1/99x100

B = 1 - 1/2 + 1/3 - 1/4 + ... + 1/99 - 1/100

B = (1 + 1/2 + 1/3 + 1/4 + ... + 1/99 + 1/100) - (2.1/2 + 2.1/4 + 2.1/6 + ... + 2.1/100)

B = (1 + 1/2 + 1/3 + 1/4 + ... + 1/99 + 1/100) - (1 + 1/2 + 1/3 + ... + 1/50)

B = 1/51 + 1/52 + 1/53 + ... + 1/100

=> tỉ số a/b = 1

Bình luận (0)
NT
Xem chi tiết
SN
13 tháng 6 2015 lúc 15:32

ta có:\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+...+\frac{1}{100}\)

\(\frac{2012}{51}+\frac{2012}{52}+...+\frac{2012}{100}=2012\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)

bài toán được viết lại như sau:

\(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right).x=2012\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)

\(\Rightarrow x=2012\left(\frac{1}{51}+...+\frac{1}{100}\right):\left(\frac{1}{51}+...+\frac{1}{100}\right)\)

\(\Rightarrow x=2012\)

vậy x=2012

Bình luận (0)
H24
Xem chi tiết
H24
12 tháng 6 2016 lúc 18:19

Nhân S với 2 ta được:
S = 2/1x2x3 + 2/2x3x4 + 2/3x4x5 + ... + 2/98x99x100
   = (1/1x2 – 1/2x3) + (1/2x3 – 1/3x4) + (1/3x4 – 1/4x5)  + …….. + (1/98x99 – 1/99x100)
   = 1/1x2 – 1/99x100 = 1/2 – 1/9900 = 9898/19800
Vậy:
S = 1/1x2x3 + 1/2x3x4 + 1/3x4x5 + ... + 1/98x99x100 
   = 9898/19800 : 2 
S = 4949/19800

Bình luận (0)
TH
Xem chi tiết
LD
14 tháng 4 2016 lúc 19:55

Sai đề à bạn    

       Trần Thị Huệ
Bình luận (0)
H24
Xem chi tiết
H24
21 tháng 4 2019 lúc 12:20

Nhanh giúp mk

Bình luận (0)
H24
Xem chi tiết
NA
12 tháng 6 2016 lúc 16:20

mình nghĩ bạn điền sai đề

Bình luận (0)
H24
12 tháng 6 2016 lúc 16:21

ukm mk đánh sai thiệt phải là 1/5x6 chứ ko phải 1/4x5

Bình luận (0)
HD
Xem chi tiết
BT
15 tháng 7 2017 lúc 12:59

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)

\(=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)

\(=\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}\right)+\left(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}\right)\)

Ta có:

\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}>\dfrac{1}{75}+\dfrac{1}{75}+...+\dfrac{1}{75}=\dfrac{25}{75}=\dfrac{1}{3}\)

\(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}>\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{25}{100}=\dfrac{1}{4}\)

\(\Rightarrow A>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\) (1)

Lại có:

\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{25}{50}=\dfrac{1}{2}\)

\(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}< \dfrac{1}{75}+\dfrac{1}{75}+...+\dfrac{1}{75}=\dfrac{25}{75}=\dfrac{1}{3}\)

\(\Rightarrow A< \dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\) (2)

Từ (1) và (2) suy ra \(\dfrac{7}{12}< A< \dfrac{5}{6}\)

Bình luận (0)
PM
Xem chi tiết
AM
1 tháng 7 2015 lúc 20:59

\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

Do \(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{100}\Rightarrow A=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>25\cdot\frac{1}{80}+25\cdot\frac{1}{100}=\frac{7}{12}\)

và \(A

Bình luận (0)
AM
1 tháng 7 2015 lúc 20:26

olm lag kinh đang làm lag thoát ra mất tiêu

-------đề đúng------------

Bình luận (0)
PL
6 tháng 9 2018 lúc 19:54

Ta có : 

Vậy ĐPCM

Bình luận (0)