Những câu hỏi liên quan
vy
Xem chi tiết
TN
29 tháng 3 2015 lúc 11:17

bài giải : 19952000 tận cùng bởi chữ số 5 nên chia hết cho 5. Vì vậy, ta đặt vấn đề là liệu n2 + n + 1 có chia hết cho 5 không ?

Ta có n2 + n = n(n + 1), là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng của n2 + n chỉ có thể là 0 ; 2 ; 6 => n2 + n + 1 chỉ có thể tận cùng là 1 ; 3 ; 7 => n2 + n + 1 không chia hết cho 5.

Vậy không tồn tại số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.

Bình luận (0)
D6
29 tháng 3 2015 lúc 12:32

: 19952000 tận cùng bởi chữ số 5 nên chia hết cho 5. Vì vậy, ta đặt vấn đề là liệu n2 + n + 1 có chia hết cho 5 không ?

Ta có n2 + n = n(n + 1), là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng của n2 + n chỉ có thể là 0 ; 2 ; 6 => n2 + n + 1 chỉ có thể tận cùng là 1 ; 3 ; 7 => n2 + n + 1 không chia hết cho 5.

Vậy không tồn tại số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.

Bình luận (0)
NL
20 tháng 8 2017 lúc 9:34

về mà hỏi bố mày ấy

Bình luận (0)
H24
Xem chi tiết
KV
15 tháng 10 2018 lúc 18:05

Ta có n2 + n = n(n + 1), là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng của n2 + n chỉ có thể là 0 ; 2 ; 6 => n2 + n + 1 chỉ có thể tận cùng là 1 ; 3 ; 7 => n2 + n + 1 không chia hết cho 5.

Vậy không tồn tại số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.

Bình luận (0)
XN
Xem chi tiết
DR
Xem chi tiết
NN
17 tháng 9 2017 lúc 14:08

Bài1:

Với n thì \(n^2\) có tận cùng lần lượt là 1;4;9;6;5

=>\(n^2+n+1\) có tận cùng lần lượt là:1;3

\(1995^{2000}\) luôn có tận cùng là %

Do đó ko tồn tại số tự nhiên n nào để\(n^2+n+1⋮1995^{2000}\)

Bình luận (1)
NQ
Xem chi tiết
DA
Xem chi tiết
TL
16 tháng 6 2015 lúc 17:14

cách làm của Lê Chí Cường đúng:

Tuy nhiên: (n500)2 có tận cùng là 0;1;4;5;6;9

=> ((n500)2)2 có thể tận cùng là: 0;1;5;6 không phải là 0;1;4;5;6

Bình luận (0)
SN
16 tháng 6 2015 lúc 20:11

giả sử n2000+1 chia hết cho 10

=>n2000 có tận cùng =8

xét n=2k+1 =>n4 có tận cùng =1

=>(n4)500=n2000 có tận cùng =1 (trái giả thuyết)

xét n=2k =>n4 có tận cùng =6 hoặc 0    

=>(n4)500=n2000 có tận cùng =6 hoặc 0(trái giả thuyết)

vậy không có n

Bình luận (0)
HQ
Xem chi tiết
DL
14 tháng 7 2016 lúc 1:33

\(A=n^2+n+1=n\left(n+1\right)+1\)

Nếu \(n\vdots5\Rightarrow n\left(n+1\right)\vdots5\Rightarrow A=n\left(n+1\right)+1\)không chia hết cho 5.Nếu \(n\equiv1\left(mod5\right)\Rightarrow n+1\equiv2\left(mod5\right)\Rightarrow n\left(n+1\right)\equiv2\left(mod5\right)\Rightarrow A=n\left(n+1\right)+1\equiv3\left(mod5\right)\)không chia hết cho 5.Nếu \(n\equiv2\left(mod5\right)\Rightarrow n+1\equiv3\left(mod5\right)\Rightarrow n\left(n+1\right)\equiv6\equiv1\left(mod5\right)\Rightarrow A=n\left(n+1\right)+1\equiv2\left(mod5\right)\)không chia hết cho 5.Nếu \(n\equiv3\left(mod5\right)\Rightarrow n+1\equiv4\left(mod5\right)\Rightarrow n\left(n+1\right)\equiv12\equiv2\left(mod5\right)\Rightarrow A=n\left(n+1\right)+1\equiv3\left(mod5\right)\)không chia hết cho 5.Nếu \(n\equiv4\left(mod5\right)\Rightarrow n+1\vdots5\Rightarrow n\left(n+1\right)\vdots5\Rightarrow A=n\left(n+1\right)+1\)không chia hết cho 5.

Vậy, trong mọi trường hợp thì A không chia hết cho 5 nên A không chia hết cho 20052017 (vì 2005 chia hết cho 5)

Bình luận (0)
LL
Xem chi tiết
P2
Xem chi tiết
NA
10 tháng 7 2016 lúc 16:10

 Biết câu 2. Muốn chia hết 1995 thì số tận cùng phảl là 0 hoặc 5. Bạn thay n bằng các số từ 0 đến 9. Ko số nào đáp ứng điều kiện cả. Nên ko tồn tại.

Bình luận (0)