Tồn tại hay không STN sao cho \(N^2+n+1⋮1995^{2000}\)
Tồn tại hay không số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
bài giải : 19952000 tận cùng bởi chữ số 5 nên chia hết cho 5. Vì vậy, ta đặt vấn đề là liệu n2 + n + 1 có chia hết cho 5 không ?
Ta có n2 + n = n(n + 1), là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng của n2 + n chỉ có thể là 0 ; 2 ; 6 => n2 + n + 1 chỉ có thể tận cùng là 1 ; 3 ; 7 => n2 + n + 1 không chia hết cho 5.
Vậy không tồn tại số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
: 19952000 tận cùng bởi chữ số 5 nên chia hết cho 5. Vì vậy, ta đặt vấn đề là liệu n2 + n + 1 có chia hết cho 5 không ?
Ta có n2 + n = n(n + 1), là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng của n2 + n chỉ có thể là 0 ; 2 ; 6 => n2 + n + 1 chỉ có thể tận cùng là 1 ; 3 ; 7 => n2 + n + 1 không chia hết cho 5.
Vậy không tồn tại số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
Tồn tại hay không số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
Ta có n2 + n = n(n + 1), là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng của n2 + n chỉ có thể là 0 ; 2 ; 6 => n2 + n + 1 chỉ có thể tận cùng là 1 ; 3 ; 7 => n2 + n + 1 không chia hết cho 5.
Vậy không tồn tại số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
Tồn tại hay không stn n sao cho n^2+n+1 chia hết 1995^2000
Tồn tại hay không STN sao cho N^2+n+1⋮\(1995^{2000}\)
Tìm số dư của phép chia
\(2^8+3^{12}+4^{16}+...+2004^{8010}⋮5\)
Bài1:
Với n thì \(n^2\) có tận cùng lần lượt là 1;4;9;6;5
=>\(n^2+n+1\) có tận cùng lần lượt là:1;3
Mà \(1995^{2000}\) luôn có tận cùng là %
Do đó ko tồn tại số tự nhiên n nào để\(n^2+n+1⋮1995^{2000}\)
Chứng minh rằng không thể tồn tại số n sao cho n2 +1=19951995...1995 (có 10 số 1995)
có tồn tại hay không số nguyên n sao cho n 2000 + 1 chia hết cho 10 ?
cách làm của Lê Chí Cường đúng:
Tuy nhiên: (n500)2 có tận cùng là 0;1;4;5;6;9
=> ((n500)2)2 có thể tận cùng là: 0;1;5;6 không phải là 0;1;4;5;6
giả sử n2000+1 chia hết cho 10
=>n2000 có tận cùng =8
xét n=2k+1 =>n4 có tận cùng =1
=>(n4)500=n2000 có tận cùng =1 (trái giả thuyết)
xét n=2k =>n4 có tận cùng =6 hoặc 0
=>(n4)500=n2000 có tận cùng =6 hoặc 0(trái giả thuyết)
vậy không có n
có tồn tại hay không STN n để n2 +n +1 chia hết cho 20052017
\(A=n^2+n+1=n\left(n+1\right)+1\)
Nếu \(n\vdots5\Rightarrow n\left(n+1\right)\vdots5\Rightarrow A=n\left(n+1\right)+1\)không chia hết cho 5.Nếu \(n\equiv1\left(mod5\right)\Rightarrow n+1\equiv2\left(mod5\right)\Rightarrow n\left(n+1\right)\equiv2\left(mod5\right)\Rightarrow A=n\left(n+1\right)+1\equiv3\left(mod5\right)\)không chia hết cho 5.Nếu \(n\equiv2\left(mod5\right)\Rightarrow n+1\equiv3\left(mod5\right)\Rightarrow n\left(n+1\right)\equiv6\equiv1\left(mod5\right)\Rightarrow A=n\left(n+1\right)+1\equiv2\left(mod5\right)\)không chia hết cho 5.Nếu \(n\equiv3\left(mod5\right)\Rightarrow n+1\equiv4\left(mod5\right)\Rightarrow n\left(n+1\right)\equiv12\equiv2\left(mod5\right)\Rightarrow A=n\left(n+1\right)+1\equiv3\left(mod5\right)\)không chia hết cho 5.Nếu \(n\equiv4\left(mod5\right)\Rightarrow n+1\vdots5\Rightarrow n\left(n+1\right)\vdots5\Rightarrow A=n\left(n+1\right)+1\)không chia hết cho 5.Vậy, trong mọi trường hợp thì A không chia hết cho 5 nên A không chia hết cho 20052017 (vì 2005 chia hết cho 5)
1)Chứng minh rằng các tổng sau không thể là số chính phương :
a) M = 19k + 5k + 1995k + 1996k (với k chẵn)
b) N = 20042004k + 2003
2) Tìm chữ số tận cùng của tổng T = 23 + 37 + 411 + … + 20048011
3) Tồn tại hay không số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
1/ Tìm GTLN & GTNN của x/(x+2012)^2
2/ Tồn tại hay không số tự nhiên n để n^2+n+1 chia hết cho 1995
Biết câu 2. Muốn chia hết 1995 thì số tận cùng phảl là 0 hoặc 5. Bạn thay n bằng các số từ 0 đến 9. Ko số nào đáp ứng điều kiện cả. Nên ko tồn tại.