Những câu hỏi liên quan
VL
Xem chi tiết
RT
26 tháng 7 2016 lúc 10:22

(6n+5) và ( 2n+1) 

Gọi d là ƯC ( 6n+5) và  (2n+1)

=> (6n+5) chia hết d và ( 2n+1) chia hết d

=> ( 6n+5) chia hết d và 3( 2n+1) chia hết d

=> [ ( 6n+5)  - ( 6n + 3 ) ] chia hết d

=> 2 chia hết d

=> d = 1 hoặc 2 

Vậy 6n+5 và 2n+1 nguyên tố cùng nhau

Bình luận (0)
KN
Xem chi tiết
VT
29 tháng 7 2016 lúc 19:42

Gọi (2n + 1,6n + 5) = d (d \(\in\)N)

=> 2n + 1 chia hết cho d và 6n + 5 chia hết cho d

=> 3 . (2n + 1) chia hết cho d và 6n + 5 chia hết cho d

=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d

=> 6n + 5 - (6n + 3) chia hết cho d

hay 2 chia hết cho d => d \(\in\)Ư(2) => d \(\in\){-2;-1;1;2}

Mà d là lớn nhất nên d = 2

Ta thấy 6n + 5 ko chia hết cho 2 và 2n + 1 ko chia hết cho 2

=> (2n + 1,6n + 5) = 1

Vậy 2n + 1 và 6n + 5 là 2 số nguyên tố cùng nhau với mọi n thuộc N

Ủng hộ mk nha !!! ^_^

Bình luận (0)
H24
29 tháng 7 2016 lúc 19:44

Gọi d là Ưcln của 2n + 1 và 6n + 5

Khi đó : 2n + 1 chia hết cho d và 6n + 5 chia hết cho d

<=> 3.(2n + 1) chia hết cho d và 6n + 5 chia hết cho d

=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d

=> (6n + 5) - (6n + 3) chia hết cho d => 2 chia hết cho d

Mà ưc của 2 là 1 => d = 1

VậY (đpcm_)

Bình luận (0)
OP
29 tháng 7 2016 lúc 19:49

Giả sử UCLN của 2n + 1 và 6n + 5 là : H

Ta có : 2n + 1 chia hết cho H và 6n + 5 chia hết cho H

=> 3( 2n + 1 ) chia hết cho H và 6n + 5 => chia hết cho H

=> 6n + 3 chia hết cho H và 6n + 5 => chia hết cho H

Vậy nên ( 6n + 5 ) - ( 6n + 3 ) chia hết cho H => H chia hết cho 2

Ư ( 2 ) là 1 => H = 1

Vậy .............

Bình luận (0)
NU
Xem chi tiết
LD
18 tháng 12 2014 lúc 19:42

dk kái đó gọi là chứng minh phản chứng

 

Bình luận (0)
H24
Xem chi tiết
ST
23 tháng 12 2015 lúc 4:53

trong chtt có 

tick nha

Bình luận (0)
TH
23 tháng 12 2015 lúc 5:17

tham khảo câu hỏi tương tự nha bạn

Bình luận (0)
KK
23 tháng 12 2015 lúc 5:27

2n + 2 = 4n

6n + 5 = 11n

=> ƯCLN(4n, 11n) = 1

<=> ƯCLN(2n + 2, 6n + 5) = 1

Vì 2, 5 là số nguyên tố mà chỉ duy nhất 6 là hợp số nên 6 + 5 = 11 là số nguyên tố

=> ƯCLN(2n + 2, 6n + 5) = 1

=> ĐPCM

Bình luận (0)
NH
Xem chi tiết
PT
Xem chi tiết
DH
17 tháng 3 2017 lúc 12:49

Gọi \(d\inƯCLN\left(2n+1;6n+5\right)\) nên ta có :

\(2n+1⋮d\) và \(6n+5⋮d\)

\(\Leftrightarrow3\left(2n+1\right)⋮d\) và \(6n+5⋮d\)

\(\Leftrightarrow6n+3⋮d\) và \(6n+5⋮d\)

\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow d=2\)

Mà \(2n+1;6n+5\) là các số lẻ nên không thể có ước là 2

\(\Rightarrow d=1\)

\(\Rightarrow2n+1\) và \(6n+5\) là nguyên tố cùng nhau

Bình luận (0)
NQ
Xem chi tiết
HH
31 tháng 7 2018 lúc 15:35

Giả sử 2n+1 và 6n+5 ko phải là 2 số nguyên tố cùng nhau thì:

cho d là ƯCLN của chúng và d>1

ta có:2n+1chia hết cho d,vậy 6n+3 cũng chia hết cho d

suy ra:6n+5-(6n+3) chia hết cho d

vậy 2 chia hết cho d

mà các ƯC của 2 là :2 và 1

mà cả 2 số đã cho đều là số lẻ,nên d phải bằng 1

nhưng như vậy thì trái với giả thuyết mà chúng ta đặt ra ban đầu

vậy 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau

Bình luận (0)
AP
Xem chi tiết
C3
4 tháng 12 2018 lúc 18:57

Gọi ƯCLN ( 2n+1, 6n+4) là d ( d thuộc N)

Ta có:

2n + 1 chia hết chia cho d => 3(2n+1) chia hết cho d => 6n+3 chia hết cho d     (1)

6n+4 chia hết cho d                                                                                               (2)

Từ (1), (2) suy ra:

(6n+4) - (6n+3) chia hết cho d

                      1 chia hết cho d

=>                   d=1

=>                    ƯCLN(2n+1,6n+4) = 1

Vậy 2n+1 và 6n+4 là hai số nguyên tố cùng nhau

Bình luận (0)
VC
Xem chi tiết
NL
7 tháng 4 2020 lúc 8:31

Gọi (2n+1, 6n+5)=d  (d là số tự nhiên khác 0)

=> 2n+1 chia hết cho d và 6n+5 chia hết cho d

=> (2n+1)-(6n+5) chia hết cho d

=> (6n+3)-(6n+5) chia hết cho d

=> -2 chia hết cho d

=> d thuộc Ư(-2)={1;2}

Mà 6n+5 lẻ

=> d=1

=> 2n+1 và 6n+5 nguyên tố cùng nhau

Vậy ___

Học tốt!

Bình luận (0)
 Khách vãng lai đã xóa