Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
FS
Xem chi tiết
H24

x^2 + 2y^2 + 2xy + 4x + 9y + 3 = 0 
<=> x^2 + y^2 + 4 + 2xy + 4x + 4y + y^2 + 5y - 1 = 0 
<=> (x + y + 2)^2 + y^2 + 5y - 1 = 0 
<=> (x + y + 2)^2 + y^2 + 4y + 4 + y - 5 = 0 
<=> (x + y + 2)^2 + (y + 2)^2 + y + 2 = 7 
để gọn trong việc trình bài ta đặt u = y + 2 (với u nguyên). 
ta có pt: 
(x + u)^2 + u^2 + u = 7 
<=> (x + u)^2 + (u + 1/2)^2 = 7 + 1 / 4 (**) 
từ (**) ta thấy: 0 ≤ (x + u)^2 ≤ 7 + 1 / 4 
vì (x + u) là số nguyên nên (x + u)^2 chỉ có thể nhận các giá trị là: 0, 1, 4. 
*nếu (x + u)^2 = 0 
(**) => (u + 1/2)^2 = 7 + 1 / 4 
=> u^2 + u - 7 = 0 pt này không có nghiệm nguyên 
*nếu (x + u)^2 = 4 
(**) => (u + 1/2)^2 = 3 + 1 / 4 
=> u^2 + u - 3 = 0 không có nghiệm nguyên. 
*nếu (x + u)^2 = 1 
(**) => (u + 1/2)^2 = 6 + 1 / 4 
=> u^2 + u - 6 = 0 
=> u = - 3 hoặc u = 2 
+ với u = -3 => y = - 3 - 2 = - 5 
có: (x - 3)^2 = 1 
=> x - 3 = -1 hoặc x - 3 = 1 
=> x = 2 hoặc x = 4 
+ với u = 2 => y = 0 
có: (x + 2)^2 = 1 => x + 2 = - 1 hoặc x + 2 = 1 
=> x = - 3 hoặc x = -1 
tóm lại pt có các nghiệm nguyên (x, y) là: 
(2, - 5), (4, - 5), (- 3, 0), (-1, 0) 

Thông cảm nha tại tớ làm chi tiết nên bị dài

Bình luận (0)

x^2 + 2y^2 + 2xy + 4x + 9y + 3 = 0 
<=> x^2 + y^2 + 4 + 2xy + 4x + 4y + y^2 + 5y - 1 = 0 
<=> (x + y + 2)^2 + y^2 + 5y - 1 = 0 
<=> (x + y + 2)^2 + y^2 + 4y + 4 + y - 5 = 0 
<=> (x + y + 2)^2 + (y + 2)^2 + y + 2 = 7 
để gọn trong việc trình bài ta đặt u = y + 2 (với u nguyên). 
ta có pt: 
(x + u)^2 + u^2 + u = 7 
<=> (x + u)^2 + (u + 1/2)^2 = 7 + 1 / 4 (**) 
từ (**) ta thấy: 0 ≤ (x + u)^2 ≤ 7 + 1 / 4 
vì (x + u) là số nguyên nên (x + u)^2 chỉ có thể nhận các giá trị là: 0, 1, 4. 
*nếu (x + u)^2 = 0 
(**) => (u + 1/2)^2 = 7 + 1 / 4 
=> u^2 + u - 7 = 0 pt này không có nghiệm nguyên 
*nếu (x + u)^2 = 4 
(**) => (u + 1/2)^2 = 3 + 1 / 4 
=> u^2 + u - 3 = 0 không có nghiệm nguyên. 
*nếu (x + u)^2 = 1 
(**) => (u + 1/2)^2 = 6 + 1 / 4 
=> u^2 + u - 6 = 0 
=> u = - 3 hoặc u = 2 
+ với u = -3 => y = - 3 - 2 = - 5 
có: (x - 3)^2 = 1 
=> x - 3 = -1 hoặc x - 3 = 1 
=> x = 2 hoặc x = 4 
+ với u = 2 => y = 0 
có: (x + 2)^2 = 1 => x + 2 = - 1 hoặc x + 2 = 1 
=> x = - 3 hoặc x = -1 
tóm lại pt có các nghiệm nguyên (x, y) là: 
(2, - 5), (4, - 5), (- 3, 0), (-1, 0) 

Bình luận (0)
H24
24 tháng 6 2019 lúc 20:13

\(x^2+2y^2+2xy+4x+9y+3=0\)

\(\Leftrightarrow\left(x+y\right)^2+y^2+4x+9y+3=0\)

\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4+y^2+5y=1\)

\(\Leftrightarrow\left(x+y+2\right)^2+y^2+5y=1\)

\(\Leftrightarrow4\left(x+y+2\right)^2+4y^2+20y=4\)

\(\Leftrightarrow4\left(x+y+2\right)^2+4y^2+20y+25=29\)

\(\Leftrightarrow4\left(x+y+2\right)^2+\left(2y+5\right)^2=29\)

\(\Rightarrow\left(2y+5\right)^2\le29\)

\(\Leftrightarrow-5\le2y+5\le5\)

\(\Rightarrow2y+5\in\left\{-5;-3;-1;1;3;5\right\}\)(Do 2y + 5 lẻ)

Từ đó tìm được y rồi suy ra x

Bình luận (0)
NQ
Xem chi tiết
DP
9 tháng 8 2017 lúc 16:41

2y^2+(2x+9)y+x^2+4x+3=0

Bình luận (0)
TT
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết
NU
19 tháng 9 2019 lúc 12:43

\(a,4x^2+9y^2+4x-24y+17=0\)

\(\Rightarrow\left(4x^2+4x+1\right)+\left(9y^2-24y+16\right)=0\)

\(\Rightarrow\left(2x+1\right)^2+\left(3y-4\right)^2=0\)

\(\left(2x+1\right)^2\ge0;\left(3y-4\right)^2\ge0\)

\(\Rightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(3y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+1=0\\3y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{4}{3}\end{cases}}}\)

Bình luận (1)
MH
Xem chi tiết
LV
8 tháng 8 2022 lúc 7:10

Bình luận (0)
BQ
Xem chi tiết
HP
14 tháng 8 2017 lúc 9:50

mấu chốt chỉ là thế 3 vào pt 1 

Bình luận (0)
H24
Xem chi tiết
HH
Xem chi tiết