Tìm các cặp số nguyên ( x, y) thoả mãn đồng thời các điều kiện sau:
x + y = 4 và |x+2| + |y| =6
bài 1:tìm các cặp số nguyên (x,y)thỏa mãn đồng thời các đk sau:
x+y=5 và Ix+1I+Iy-2I=4
x-y=3 và |x-6|+|y-1|=4
Tìm các cặp số nguyên \(\left(x;y\right)\)thõa mãn đồng thời các điều kiện sau
\(x+y=4\); \(\text{|}x+2\text{|}+\text{|}y\text{|}=6\)
Từ \(x+y=4\Rightarrow y=4-x\)
\(\Rightarrow\left|x+2\right|+\left|y\right|=\left|x+2\right|+\left|4-x\right|=6\)(1)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra \(\Leftrightarrow ab\ge0\) ta có :
\(\left|x+2\right|+\left|4-x\right|\ge\left|x+2+4-x\right|=6\)
Vậy để (1) xảy ra \(\Leftrightarrow\left(x+2\right)\left(4-x\right)\ge0\Leftrightarrow-2\le x\le4\)
Với x = - 2 thì y = 6 ; x = - 1 thì y = 5; x = 0 thì y = 4; x = 1 thì y = 3; x = 2 thì y = 2 ; x = 3 thì y = 1; x = 4 thì y = 0
Vậy \(\left(x;y\right)=\left\{\left(-2;6\right);\left(-1;5\right);\left(0;4\right);\left(1;3\right);\left(2;2\right);\left(3;1\right);\left(4;0\right)\right\}\)
Tìm các số nguyên x, y, z đồng thời thoả mãn các điều kiện sau :
x2 = y - 1 ; y2 = z -1 ; z2 = x - 1
Tìm các cặp số thực (x;y) sao cho x và y thỏa mãn đồng thời hai điều kiện: x=x^2+y^2; y=2xy.
Tìm các cặp số thực(x;y)sao cho x và y thỏa mãn đồng thời hai điều kiện: x=x mũ2+y mũ2 và y=2xy
Tìm các số nguyên x, y thoả mãn điều kiện: x(y + 2) - y = 3
1) Tìm các số a,b thỏa mãn trong các điều kiện sau:
a + b = | b | - | a |
2) Có bao nhiêu cặp số nguyên (x,y) thỏa mãn một trong các điều kiện sau:
| x | + | y | = 20
| x | + | y | < 20
(Các cặp số (3 ; 4) và (4 ; 3) là hai cặp số khác nhau).
Tìm m biết x,y là các số nguyên thoả mãn điều kiện xy=3 và x+y=-(m+2)
tìm các số nguyên dương x,y,z thảo mãn đồng thời 2 điều kiện:
(x-y.\(\sqrt[]{}\)2011)/(y-z.\(\sqrt{ }\)2011) là số hữu tỉ và x^2+y^2+z^2 là số nguyên tố