Những câu hỏi liên quan
HN
Xem chi tiết
CN
3 tháng 8 2019 lúc 8:36

\(B=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-...-\frac{1}{6}-\frac{1}{2}\)

\(-B=\frac{1}{90}+\frac{1}{72}+\frac{1}{56}+...+\frac{1}{6}+\frac{1}{2}\)

\(-B=\frac{1}{10.9}+\frac{1}{9.8}+\frac{1}{8.7}+...+\frac{1}{3.2}+\frac{1}{2.1}\)

\(-B=\frac{1}{10}-\frac{1}{9}+\frac{1}{9}-\frac{1}{8}+...+\frac{1}{2}-1\)

\(-B=\frac{1}{10}-1\)

\(-B=\frac{9}{10}\)

=> \(B=\frac{-9}{10}\)

Bình luận (0)
XO
3 tháng 8 2019 lúc 8:39

\(B=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{6}-\frac{1}{2}\)

\(=\frac{1}{90}-\left(\frac{1}{72}+\frac{1}{56}+...+\frac{1}{6}+\frac{1}{2}\right)\)

\(=\frac{1}{90}-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{56}+\frac{1}{72}\right)\)

\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}+\frac{1}{8.9}\right)\)

\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)

\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)

\(=\frac{1}{90}-\frac{8}{9}\)

\(=-\frac{79}{90}\)

Bình luận (0)
HN
3 tháng 8 2019 lúc 8:44

tại sao xyz ko gộp

Bình luận (0)
DN
Xem chi tiết
KS
5 tháng 10 2019 lúc 22:05

Đặt :
\(\frac{1}{315}=a;\frac{1}{651}=b\)  thay vào A ta được :

\(A=\left(2+a\right)b-\left(3+1-b\right).3a-4ab+12a\)

\(\Leftrightarrow A=2b+ab-12a+3ab-4ab+12a\)

\(\Leftrightarrow A=2b\)

Thay \(b=\frac{1}{651}\) ta được :

\(A=\frac{2}{651}\)

Chúc bạn học tốt !!!

Bình luận (0)
NL
Xem chi tiết
H24
6 tháng 11 2017 lúc 12:55

Muốn cho số có hai chữ số giống nhau và chia hết cho 2 thì số đó phải là một trong các số 22, 44, 66, 88. Bây giờ ta tìm trong những số này số mà chia cho 5 thì dư 3.

Đó là số 88.



Xem thêm tại: http://loigiaihay.com/bai-99-trang-39-sgk-toan-6-tap-1-c41a3896.html#ixzz4xczZ4dOb

Bình luận (0)
KI
Xem chi tiết
PQ
27 tháng 2 2018 lúc 20:20

Ta có : 

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2009}}+\frac{1}{2^{2010}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2008}}+\frac{1}{2^{2009}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2008}}+\frac{1}{2^{2009}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2009}}+\frac{1}{2^{2010}}\right)\)

\(A=1-\frac{1}{2^{2010}}\)

\(A=\frac{2^{2010}-1}{2^{2010}}\)

Vậy \(A=\frac{2^{2010}-1}{2^{2010}}\)

Chúc bạn học tốt 

Bình luận (0)
KI
27 tháng 2 2018 lúc 20:18

Ai nhanh mình k !

Bình luận (0)
NT
Xem chi tiết
VD
Xem chi tiết
NM
28 tháng 8 2020 lúc 13:45

\(=\frac{8}{9}+\frac{1}{2}-\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)

\(=\frac{8}{9}+\frac{1}{2}-\left(\frac{1}{3}-\frac{1}{9}\right)=1+\frac{1}{2}-\frac{1}{3}=1\frac{1}{6}\)

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
NK
Xem chi tiết
HS
21 tháng 3 2020 lúc 9:53

\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{9900}\)

\(A=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{99\cdot100}\)

\(A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{4}-\frac{1}{100}=\frac{25}{100}-\frac{1}{100}=\frac{24}{100}=\frac{6}{25}\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết