Những câu hỏi liên quan
VQ
Xem chi tiết
VA
Xem chi tiết
NQ
Xem chi tiết
NL
Xem chi tiết
HN
3 tháng 10 2016 lúc 12:10

a/ \(\left(x+y+z\right)^3-x^3-y^3-z^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

b/ Đề bài thiếu dữ kiện.

Bình luận (0)
HH
30 tháng 9 2017 lúc 20:40

a)

( x + y +  = ) 3  - x3 - y3 =3 = x3 + y3 =3 + 3( x + y ) (y + = ) ( = + x ) - x3 - y3 - =3

= 3( x + y ) ( y + = ) ( = + x )

b) Đề bài thiếu điều kiện

Bình luận (0)
SK
Xem chi tiết
PV
Xem chi tiết
DH
13 tháng 2 2019 lúc 14:34

\(\hept{\begin{cases}x+y+z=2010\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2010}\end{cases}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}}\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+y+z\right)+xy}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+z\right)+y\left(z+x\right)}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(z+y\right)=0\)

<=> x+y = 0 hoặc x+z=0 hoặc z+y=0

<=> x = -y hoặc x = -z hoặc z = -y

\(\Rightarrow P=\left(x^{2007}+y^{2007}\right)\left(y^{2009}+z^{2009}\right)\left(z^{2009}+x^{2009}\right)=0\)

Bình luận (0)
PT
Xem chi tiết
VP
Xem chi tiết
NH
Xem chi tiết
NL
23 tháng 6 2017 lúc 14:52

Vào câu hỏi này nè

https://olm.vn/hoi-dap/question/146868.html

Cho x+y+z=1 và x3+y3+z3=1

Tính A=x2007+y2007+z2007

Bình luận (0)