Những câu hỏi liên quan
NT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
DT
7 tháng 9 2017 lúc 9:22

\(\frac{x+2y}{x+7}=\frac{2018}{2017}\)

\(2017\left(x+2y\right)=2018\left(x+y\right)\)

\(2017x+4034y=2018x+2018y\)

\(x=2016y\)

x,y nguyên dương nên x nhỏ nhất khi y = 1 

Khi đó x =...

Bình luận (0)
NL
Xem chi tiết
DA
1 tháng 12 2018 lúc 20:50

123456789

Bình luận (0)
H24
1 tháng 12 2018 lúc 21:18

\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

để A nhỏ nhất => \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất => |x-2016|+2018 nhỏ nhất

\(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)

dấu = xảy ra khi |x-2016|=0

=> x=2016

Vậy Min A=\(\frac{2017}{2018}\)khi x=2016

ps: sai sót bỏ qua 

Bình luận (0)
H24
Xem chi tiết
QK
Xem chi tiết
DT
Xem chi tiết
LD
19 tháng 9 2017 lúc 20:09

Ta có : \(B=\left|x-2017\right|+\left|x-2018\right|\)

\(\Rightarrow B=\left|x-2017\right|+\left|2018-x\right|\ge\left|x-2017+2018-x\right|=1\)

Vậy Bmin = 1 khi \(2017\le x\le2018\)

Bình luận (0)
NV
28 tháng 12 2017 lúc 20:50

/x-2017/>hoặc=0 với mọi x

/x-2018/>hoặc=0 với mọi x

=>/x-2017/+/x-2018/>hoặc=0

x-2017=0 =>x=2017

x-2018=0 =>x=2018

Bình luận (0)
PT
Xem chi tiết
DH
16 tháng 1 2021 lúc 18:17

1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất. 

mà \(\left|x-2016\right|+2018\ge2018\)

Dấu \(=\)khi \(x=2016\).

Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).

2) \(x-2xy+y=0\)

\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)

Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).

Bình luận (0)
 Khách vãng lai đã xóa
HD
Xem chi tiết