Tính 1/1.3+1/3.5+1/3.7+........+1/101.103
Tính 1/1.3+1/3.5+1/3.7+.......+1/101.103
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{101.103}\)
=\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{101.103}\right)\)
=\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{101}-\frac{1}{103}\right)\)
=\(\frac{1}{2}\left(1-\frac{1}{103}\right)\)
=\(\frac{1}{2}.\frac{102}{103}\)
=\(\frac{51}{103}\)
Tính tổng sau : \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{101.103}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{103}\right)=\frac{1}{2}\left(1-\frac{1}{103}\right)=\frac{1}{2}.\frac{102}{103}=\frac{51}{103}\)
cho dãy số 1/1.3+1/3.5+1/5.7+...+1/101.103 số số hạng của dãy trên là
Tính:
a) C = 3/1.3 + 3/3.5 + 3/3.7 +...+ 3/49.51
b) D = 1/2 + 1/14 + 1/35 + 1/65 + 1/104 + 1/152
a; C = \(\dfrac{3}{1.3}\) + \(\dfrac{3}{3.5}\) + \(\dfrac{3}{3.7}\) + ... + \(\dfrac{3}{49.51}\)
C = \(\dfrac{3}{2}\).(\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + ... + \(\dfrac{2}{49.51}\))
C = \(\dfrac{3}{2}\).(\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + ... + \(\dfrac{1}{49}\) - \(\dfrac{1}{51}\))
C = \(\dfrac{3}{2}\).(\(\dfrac{1}{1}\) - \(\dfrac{1}{51}\))
C = \(\dfrac{3}{2}\).\(\dfrac{50}{51}\)
C = \(\dfrac{25}{17}\)
A=2/1.3+2/3.5+2/3.7+....+2/2021.2023
=)
B=1/2.5+1/5.8+1/8.11+...+1/95.98
\(A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2021\cdot2023}\)
\(A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2023}\\ A=\dfrac{2023}{2023}-\dfrac{1}{2023}\\ A=\dfrac{2022}{2023}\)
=
=12−198tự làm tiếp nha ( giống câu a)
Giúp mình với!
Cho tổng:
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}+\frac{1}{101.103}\)
Chứng tỏ A không là số tự nhiên.
A=1 - 1/3+1/3 - 1/5+1/5 - 1/6+...+1/99 - 101+1/101 - 1/103
A=1 - 1/103
A=102/103
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}+\frac{1}{101.103}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{101.103}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{103}\right)\)
\(=\frac{1}{2}.\frac{102}{103}\)
\(=\frac{51}{103}\)
A = 1/1.3+1/3.5+...+1/99.101+1/101.103
2A = 2.(1/1.3+...+1/101.103)
= 2.102/103
=> A= 102/103
chứng tỏ A =\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{3.7}+...+\frac{2}{99.101}\) >1
biểu thức trên = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=\frac{100}{101}< 1\)
vậy A<1
\(=1-\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}+\frac{1}{101}\)
\(=\left(\frac{1}{1}+\frac{1}{101}\right)\)
\(=\frac{102}{101}\)
\(\Rightarrow A>1\)
1. tính:
a) 1.3+2.4+3.5+4.6+...+n.(n+2)
b) 1.5+2.6+3.7+...+n.(n+4)
c) 12 + 32+52+...+(2n+1)2
tính
Q= 3/4.7 + 3/7.10 + . . . + 3/64.67
M= 22/1.3 + 22/3.5 + . . . + 22/101.103
Các bạn giúp mk nha
\(Q=\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{64.67}\)
\(Q=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{64}-\frac{1}{67}\)
\(Q=\frac{1}{4}-\frac{1}{67}=\frac{63}{268}\)
\(M=\frac{22}{1.3}+\frac{22}{3.5}+...+\frac{22}{101.103}\)
\(M=\frac{22}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(M=11\cdot\left(1-\frac{1}{103}\right)\)
\(M=11\cdot\frac{102}{103}=\frac{1122}{103}\)
\(Q=\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{64.67}\)
\(\Leftrightarrow Q=3\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{64}-\frac{1}{67}\right)\)
\(\Leftrightarrow Q=3\left(\frac{1}{4}-\frac{1}{67}\right)\)
\(\Leftrightarrow Q=3.\frac{63}{268}\)
\(\Leftrightarrow Q=\frac{189}{268}\)
Câu b) bạn làm tương tự nhé :)
\(Q=\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{64.67}\)
\(\Leftrightarrow Q=\frac{3}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{64}-\frac{1}{67}\right)\)
\(\Leftrightarrow Q=1\left(\frac{1}{4}-\frac{1}{67}\right)\)
\(\Leftrightarrow Q=\frac{63}{268}\)
\(M=\frac{22}{1.3}+\frac{22}{3.5}+...+\frac{22}{101.103}\)
\(\Leftrightarrow M=\frac{22}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(\Leftrightarrow M=\frac{22}{2}\cdot\frac{102}{103}\)
\(\Leftrightarrow M=\frac{1122}{103}\)