Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TL
Xem chi tiết
VC
Xem chi tiết
VC
Xem chi tiết
H24
17 tháng 8 2017 lúc 21:03

b,c đề ko ổn

Bình luận (0)
VM
17 tháng 8 2017 lúc 21:37

đm m lm lắm thế 

Bình luận (0)
H24
17 tháng 8 2017 lúc 23:09

a)ĐK:\(-1\le x\le1\)

\(\Leftrightarrow\sqrt{1+\sqrt{1-x^2}}=x+2x\sqrt{1-x^2}\)

\(\Leftrightarrow1+\sqrt{1-x^2}=x^2+4x^2\left(1-x^2\right)+4x^2\sqrt{1-x^2}\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-1-\sqrt{1-x^2}\right)=0\)

SUy ra x=1/2 và pt trong ngoặc suy ra x=1 (bn làm tiếp) 

c)\(\sqrt{x+2}+\sqrt{5-x}+\sqrt{10+3x-x^2}=4\)

\(\Leftrightarrow\sqrt{x+2}+\sqrt{5-x}+\sqrt{\left(5-x\right)\left(x+2\right)}=4\)

Đặt \(\sqrt{x+2}=a;\sqrt{5-x}=b\left(a,b\ge0\right)\):

\(a+b+ab=4\)\(\Leftrightarrow\left(a+1\right)\left(b+1\right)=3\)

Ok tiếp nhé

Bình luận (0)
LN
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
LN
14 tháng 7 2017 lúc 23:07

\(\sqrt{x+8}=\sqrt{3x+2}+\sqrt{x+3}\) dkxd \(\left\{{}\begin{matrix}x\ge-8\\x\ge\\x\ge-\dfrac{2}{3}\end{matrix}\right.-3\)=>x\(\ge\)\(\dfrac{-2}{3}\)

\(x+8=3x+2+x+3+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(x+8=4x+5+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(x+8-4x-5=2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

-3x+3=\(2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(\left\{{}\begin{matrix}-3\left(x-3\right)\ge0\\\left(-3x+3\right)^2=4.\left(3x+2\right)\left(x+3\right)\end{matrix}\right.\)

Chắc tới đây bạn làm đc rồi nhỉ

Bình luận (0)
VC
Xem chi tiết
H24
10 tháng 8 2017 lúc 20:32

\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)

Bình luận (0)
VC
Xem chi tiết
VC
Xem chi tiết
AN
1 tháng 9 2017 lúc 9:42

Trước tiên ta chứng minh:

\(-2005x\sqrt{4-4x}\le2005\left(x^2-x+1\right)\)

Với \(x\ge0\)thì bất đẳng thức đúng.

Với \(x< 0\)

\(\left(-x\sqrt{4-4x}\right)^2\le\left(x^2-x+1\right)^2\)

\(\Leftrightarrow\left(x^2+x-1\right)^2\ge0\)đúng

Quay lại bài toán ta có:

\(\left(x-x^2\right)\left(x^2+3x+2007\right)-2005x\sqrt{4-4x}=30\sqrt[4]{x^2+x-1}+2006\ge2006\)

\(\Leftrightarrow2006\le\left(x-x^2\right)\left(x^2+3x+2007\right)-2005x\sqrt{4-4x}\le\left(x-x^2\right)\left(x^2+3x+2007\right)+2005\left(x^2-x+1\right)\)

\(\Leftrightarrow\left(x^2+x-1\right)^2\le0\)

\(\Rightarrow x^2+x-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1+\sqrt{5}}{2}\\x=\frac{-1-\sqrt{5}}{2}\end{cases}}\)

PS: Để số 2008 t không giải ra nên thay số 2006 giải được. Chắc bác chép nhầm đề.

Bình luận (0)
BT
1 tháng 9 2017 lúc 12:00

$(x-x^2)(x^2+3x+2007)-2005x\sqrt{4-4x}=30\sqrt[4]{x^2+x-1}+2006$ - Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học

Bình luận (0)