số chẵn là là số tự nhiên có chữ số tận cùng có chữ số tận cùng là số(0;1;3;5;7;9) hai số chẵn (hoac le) lien tiep thi hon kem nhau 2 don vi
Số chẵn là số tự nhiên có chữ số tận là 0, 2, 4, 6, 8; số lẻ là số tự nhiên có chữ số tận cùng là 1, 3, 5, 7, 9. Hai số chẵn (hoặc lẻ) liên tiếp thì hơn kém nhau 2 đơn vị.
Viết tập hợp C các số chẵn nhỏ hơn 10
Dựa vào các định nghĩa của đề bài ta có :
Các số chẵn nhỏ hơn 10 là 0, 2, 4, 6, 8.
Do đó ta viết C = {0, 2, 4, 6, 8}.
Số chẵn là số tự nhiên có chữ số tận là 0, 2, 4, 6, 8; số lẻ là số tự nhiên có chữ số tận cùng là 1, 3, 5, 7, 9. Hai số chẵn (hoặc lẻ) liên tiếp thì hơn kém nhau 2 đơn vị.
Viết tập hợp A ba số chẵn liên tiếp trong đó số nhỏ nhất là 18
Số chẵn liền sau 18 là 20, số chẵn liền sau 20 là 22.
Do đó ba số chẵn liên tiếp trong đó 18 là số nhỏ nhất là 18, 20, 22.
Ta viết A = {18, 20, 22}.
Số chẵn là số tự nhiên có chữ số tận là 0, 2, 4, 6, 8; số lẻ là số tự nhiên có chữ số tận cùng là 1, 3, 5, 7, 9. Hai số chẵn (hoặc lẻ) liên tiếp thì hơn kém nhau 2 đơn vị.
Viết tập hợp B bốn số lẻ liên tiếp, trong đó số lớn nhất là 31
Bốn số lẻ liên tiếp, số lớn nhất là 31 là 31, 29, 27, 25.
Do đó ta viết B = {25, 27, 29, 31}.
CMR 1 số chính phương có tận cung là 5 thì chữ số hàng chục là chữ số 2
CMR 1 số chính phương có tân cùng là 6 thì chữ số hàng chục là chữ số lẻ
CMR 1 số chính phương có tận cùng là 4 thì chữ số hàng chục là chữ số chẵn
CMR 1 số chính phương có tận cùng là 0 thì tận cùng bằng chẵn chữ số 0
Lời giải:
1.
Gọi số chính phương có tận cùng là $5$ là $a^2$. Khi đó $a$ cũng phải có tận cùng là $5$
Đặt \(a=\overline{A5}\)
\(\Leftrightarrow a^2=(\overline{A5})^2=(10A+5)^2=100A^2+100A+25\)
\(\Rightarrow a^2\) chia $100$ dư $25$ nên $a^2$ có tận cùng là $25$ hay chữ số hàng chục là $2$
--------------------
2.
Giả sử tồn tại số chính phương $a^2$ có tận cùng là $6$ và chữ số hàng chục là số chẵn.
Khi đó, $a^2$ có thể có tận cùng là $06,26,46,...,86$ $\rightarrow a^2$ không chia hết cho $4$ (1)
Mà $a^2$ có tận cùng bằng $6$ $\rightarrow a^2$ là scp chẵn, $\rightarrow a$ chẵn, $\rightarrow a.a=a^2$ chia hết cho $4$ (mâu thuẫn với (1))
Do đó không tồn tại số cp có tận cùng bằng $6$ mà chữ số hàng chục chẵn. Hay 1 số cp có tận cùng là 6 thì chữ số hàng chục là lẻ.
3.
Giả sử tồn tại số chính phương $a^2$ có tận cùng là $4$ mà chữ số hàng chục lẻ.
Khi đó $a^2$ có thể có tận cùng $14,34,...,94$. Những số trên đều không chia hết cho $4$ nên $a^2$ không chia hết cho $4$ (1)
Mà $a^2$ tận cùng là $4$ nên $a^2$ là scp chẵn. Do đó $a$ chẵn hay $a\vdots 2$
$\rightarrow a^2=a.a\vdots 4$ (mâu thuẫn với (1))
Do đó không tồn tại scp có tận cùng bằng 4 mà chữ số hàng chục lẻ. Hay một số cp có tận cùng là 4 thì chữ số hàng hàng chục là số chẵn.
-----------------
4.
Gọi $a^2$ là scp có tận cùng $n$ chữ số $0$. Khi đó $a$ cũng phải có tận cùng bẳng $0$
Đặt \(a^2=(\overline{A0...0})^2\) ($n$ chữ số 0)
\(=(10^nA)^2=10^{2n}A^2=A^2.10...0\) ($n$ chữ số 0)
Hay $a^2$ có tận cùng là $2n$ chữ số $0$. $2n$ là số chẵn nên $a^2$ có lượng chẵn chữ số 0 tận cùng (đpcm)
Số chẵn là số tự nhiên có chữ số tận cùng là 0,2,4,6,8;số lẻ là số tự nhiên có chữ số tận cùng là 1,3,5,7,9.Hai số chẵn(hoặc lẻ)liên tiếp thì hơn kém nhau 2 đơn vị.
d) Viết tập hợp B bốn số lẻ liên tiếp trong đó số lớn nhất là 31
Số chẵn là số tự nhiên có chữ số tận là 0, 2, 4, 6, 8; số lẻ là số tự nhiên có chữ số tận cùng là 1, 3, 5, 7, 9. Hai số chẵn (hoặc lẻ) liên tiếp thì hơn kém nhau 2 đơn vị.
Viết tập hợp L các sổ lẻ lớn hơn 10 nhưng nhỏ hơn 20
Các số lẻ lớn hơn 10 nhưng nhỏ hơn 20 là 11, 13, 15, 17, 19.
Do đó ta viết L = { 11, 13, 15, 17, 19}.
Xét tích A = 1 x 2 x 3 x ... x 29 x 30, trong đó các thừa số chia hết cho 5 là 5, 10, 15, 20, 25, 30; mà 25 = 5 x 5 do đó có thể coi là có 7 thừa số chia hết cho 5. Mỗi thừa số này nhân với một số chẵn cho ta một số có tận cùng là số 0. Trong tích A có các thừa số là số chẵn và không chia hết cho 5 là: 2, 4, 6, 8, 12, . . . , 26, 28 (có 12 số). Như vật trong tích A có ít nhất 7 cặp số có tích tận cùng là 0, do đó tích A có tận cùng là 7 chữ số 0.
Số 1 000 000 có tận cùng là 6 chữ số 0 nên A chia hết cho 1 000 000 và thương là số tự nhiên có tận cùng là chữ số 0.
Cho số tự nhiên n. Chứng minh rằng:
a, Nếu n tận cùng bằng chữ số chẵn thì n và 6n có chữ số tận cùng như nhau
b, Nếu b tận cùng bằng chữ số lẻ khác 5 thì n^4 tận cùng bằng 1. Nếu n tận cùng bằng chữ số chẵn khác 0 thì n^4 tận cùng bằng 6
c, Số n^5 và n có chữ số tận cùng như nhau
Nếu n tận cùng bằng chữ số lẻ khác 5 thì n^4 tận cùng bằng 1. Nếu n tận cùng bằng chữ số chẵn khác 0 thì n^4 tận cùng bằng 6
mk đánh nhầm
a) Xét hiệu 6n - n = 5n chia hết cho 10 (Do n chẵn) nên 6n và n có cùng chữ số tận cùng.
b) Xét n tận cùng 1, 3, 7, 9 ta thấy n4 đều tận cùng là 1.
Xét n tận cùng 2, 4, 6, 8 ta thấy n4 đều tận cùng là 6.
c) Tương tự
(Vì mấy bài này của lớp 6 nên mình không thể dùng cách ptđttnt được)
1, CMR 1 số chính phương có tận cùng là 0 thì phải tận cùng là chẵn chữ số 0
2, CMR 1 số chính phương tận cùng là 5 thì có chữ số hàng chục là chữ số 2