Một số nguyên tố P khi chia cho 40 có số dư r là số chính phương . Tìm số dư r
Một số nguyên tố khi chia cho 42 có số dư r là hợp số. Tìm số dư r
Ta có:
p = 42.k + r. = 2.3.7.k + r
Vì r là hợp số và r < 42 nên r phải là tích của 2 số r = x.y
x và y không thể là 2, 3, 7 và cũng không thể là số chia hết cho 2, 3, 7 được vì nếu thế thì p không là số nguyên tố.
Vậy x và y có thể là các số trong các số {5,11,13, ..}
Nếu x=5 và y=11 thì r = x.y =55>42
Vậy chỉ còn trường hợp x = 5, y = 5. Khi đó r = 25.
giúp giải khẩn cấp mng ơi:
1.cho stn n có 1995 ước số có 1 ước nguyên tố chẵn. chứng minh n là số chính phương, n chia hết 4
2. cho a là 1 hợp số, khi phân tích ra thừa số nguyên tố a chỉ chứa 2 thừa số nguyên tố khác nhau là p1 và p2. biết a^3 có tất cả 40 ước số. a^2 có bn ước số
3.tìm số tự nhiên n > hoặc = 1 sao cho tổng 1!+2!+3!+...+n! là một số chính phương
4. tìm số tự nhiên n có 2 c.s biết 2n+1 và 3n+1 đều là scp
5. chứng minh:
a)p và q là 2 số nguyên tố lớn hơn 3 thì p^2-q^2chia hết cho 24
b)Nếu a;a+k;a+2k (a và k thuộc N*) là các số nguyên tố lớn hơn 3 thì k chia hết 6
6.a)Một số nguyên tố chia 43 dư r (r là hợp số).TÌm r
b)1 số nguyên tố chia 30 dư r. Tìm r biết r ko là hợp số
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America
1) Tìm số nguyên tố nhỏ hơn 200 biết khi chia nó cho 60 thì số dư là hợp số
2) Tìm 1 số nguyên tố chia cho 30 có số dư là r. Tìm r biết r ko phải là số nguyên tố.
Bài 1 :
Gọi p là số nguyên tố phải tìm.
Ta có: p chia cho 60 thì số dư là hợp số $⇒$⇒ p = 60k + r = 22.3.5k + r với k,r $∈$∈ N ; 0 < r < 60 và r là hợp số.
Do p là số nguyên tố nên r không chia hết các thừa số nguyên tố của p là 2 ; 3 và 5.
Chọn các hợp số nhỏ hơn 60, loại đi các số chia hết cho 2 ta có tập hợp A = {9 ; 15 ; 21 ; 25 ; 27 ; 33 ; 35 ; 39 ; 45 ; 49 ; 21 ; 55 ; 57}
Loại ở tập hợp A các số chia hết cho 3 ta có tập hợp B = {25 ; 35 ; 49 ; 55}
Loại ở tập hợp B các số chia hết cho 5 ta có tập hợp C = {49}
Do đó r = 49. Suy ra p = 60k + 49. Vì p < 200 nên k = 1, khi đó p = 60.1 + 49 = 109 hoặc k = 2, khi đó p = 60.2 + 49 = 169.
Loại p = 169 = 132 là hợp số ⇒ chỉ có p = 109.
Số cần tìm là 109.
2)Gọi số nguyên tố đó là n, ta có n=30k+r (r<30, r nguyên tố)
Vì n là số nguyên tố nên r không thể chia hết cho 2,3,5
Nếu r là hợp số không chia hết cho 2,3,5 thì r nhỏ nhất là 7*7 = 49 không thỏa mãn
Vậy r cũng không thể là hợp số
Kết luận: r=1
Gọi số nguyên tố là p, ta có:
- p = 30k + r. Vì 30= 3.2.5
-30= 3.2.5.k + r
-Vì p là số nguyên tố nên r sẽ không chia hết cho 3,2,5.
-Các số không phải là hợp số mà không chia hết cho 2 là: 1;3;5;7;9;11;13;15;17;19;21;23;25;27;29.
-Loại các số 3;9;15;21;27 vì những số này chia hết cho 3.
- Loại số 5 vì số này chia hết cho 5. Ta còn các số 1,7,13,17,19,29.
-Còn lại bạn tự khai thác nhé!
Một số nguyên tố p khi chia cho 42 có số dư r là hợp số. Tìm số dư r
sao mày bảo tao ngu
iiivohpj[jpllmmbpht;yl hjkjly,y,,;h
ffurfuututiy nee7us nói linh tinh được cộng thêm điểm nha!!!
Một số nguyên tố khi chia cho 42 có số dư r là hợp số. Tìm số dư r.
Ta có: p = 42k + r = 2.3.7.k + r ( k;r thuộc N), 0 < r < 42
Vì p là số nguyên tố nên không chia hết cho 2;3;7
Các hợp số không chia hết cho 2 là 9; 15; 21; 25; 27; 33; 35; 39
Các hợp số không chia hết cho 3 là: 25;35
Các hợp số không chia hết cho 7 là: 25 ( nhân )
Vậy r = 25
Một số nguyên tố p chia cho 30 có số dư r. Tìm số dư r, biết rằng r không là số nguyên tố.
mình cũng ko chắc nữa, thông cảm nhe
Các số nguyên tố có chữ số tận cùng là 1 thì thỏa mãn điều kiện vì số dư của nó là chữ số hàng đơn vị của chính nó. Vd:61,131,151,...
Í quên như vậy thì số dư r là các chữ số có tận cùng là 1 Vd:1,11,21,31,...
một số nguyên tôt p khi chia cho 30 có số dư là r. Tìm r biết rằng r không là số nguyên tố
Một số nguyên tố p khi chia cho 42 có dư r là hợp số. Tìm r
Một số nguyên tố chia cho 30 có số dư r . Tìm số dư r biết rằng r không phải là số nguyên tố