Những câu hỏi liên quan
NH
Xem chi tiết
H24
Xem chi tiết
VA
Xem chi tiết
NL
6 tháng 5 2018 lúc 20:26

Ta có :

\(100-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)=1.100-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)\)

                                                                             \(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+.......+\left(1-\frac{1}{100}\right)\)

                                                                              \(=\frac{1}{2}+\frac{2}{3}+.........+\frac{99}{100}\)

Vậy \(100-\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+.....+\frac{99}{100}\left(ĐPCM\right)\)

Bình luận (0)
H24
Xem chi tiết
NT
12 tháng 5 2020 lúc 5:06

\(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)

Bình luận (0)
BH
Xem chi tiết
HN
Xem chi tiết
H24
1 tháng 4 2023 lúc 16:51

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

\(A< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)

\(A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A< 1-\dfrac{1}{100}\)

\(A< \dfrac{99}{100}\)

Mà \(\dfrac{99}{100}< 1\Rightarrow A< 1\)

Bình luận (0)
VN
1 tháng 4 2023 lúc 20:55

A<11⋅2+12⋅3+13⋅4+...+199⋅100�<11⋅2+12⋅3+13⋅4+...+199⋅100

A<1−1100�<1−1100

99100<1⇒A<1

Bình luận (0)
DD
Xem chi tiết
H24
Xem chi tiết
BM
Xem chi tiết