tìm giá trị nguyên của n để biểu thức D=n+1/n-2 đạt giá trị lớn nhất
tìm giá trị nguyên của n để biểu thức để biểu thức D=(n+1)/(n-2) đạt được giá trị lớn nhất
D=(n+1)/(n-2)=n-2-1/n-2
=n-2/n-2 + 1/n-2
=1+1/n-2
để D lớn nhất thì D' =1/n-2
khi n-2<0 suy ra d'<0
khi n-2>0 suy ra d'>o
để d' =1/n-2 đạt max thì n-2 phải là giá trị nguyên dương nhỏ nhất.
n-2=1=>n=3
và khi n=3 thì max D=3+1/3-2=4
Tìm tất cả các số nguyên n để biểu thức D = 2n-3/n-2 đạt giá trị lớn nhất
\(D=\frac{2n-3}{n-2}\)đạt giá trị lớn nhất <=> 2n - 3 lớn nhất và n - 2 nhỏ nhất (đk n \(\ne\)2)
Khi D lớn nhất D phải là số tự nhiên, do đó n - 2 phải là số tự nhiên nhỏ nhất
=> n - 2 = 1
=> n = 2+ 1
=> n = 3
Thay n vào biểu thức ở tử số ta có : 2.3 - 3 = 6 - 3 = 3
Vậy n = 3 và giá trị lớn nhất của D = \(\frac{2.3-3}{3-2}=\frac{3}{1}=3\)
Trả lời:
n = 3
~ Học tốt ~
Cho biểu thức A=3/x-1
a. Tìm số nguyên x để A đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất.
b. Tìm số nguyên x để A đạt giá trị lớn nhất. Tìm giá trị lớn nhất.
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
1) Cho biểu thức A=2006-x/6-x. tìm giá trị nguyên của x để A đạt giá trị lớn nhất. tìm giá trị lớn nhất đó.
2) tìm giá trị nhỏ nhất của biểu thức: P=4-x/14-x;(x thuộc Z). khi đó x nhận giá trị nguyên nào ?
tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam
a) Tìm n nguyên để các biểu thức sau đạt giá trị nhỏ nhất:
A = (n-1)2 + 2012
B = \(\frac{6n+21}{2n-1}\)
b) Tìm n nguyên để các biểu thức sau đạt giá trị lớn nhất
C = 2012 - (n + 1)2
D = \(\frac{5}{\left(x-3\right)^2+1}\)
E = \(\frac{6n+21}{2n-1}\)
Bài 1 : Cho biểu thức A = n + 1 / n - 2
a ) Tìm n để biểu thức A có giá trị nguyên .
b) Tìm n để biểu thức A có giá trị lớn nhất .
\(A=\frac{n+1}{n-2}\text{ nguyên}\)
\(\Leftrightarrow n+1⋮n-2\Leftrightarrow\left(n+1\right)-\left(n-2\right)⋮n-2\Leftrightarrow3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;-3;3\right\}\Leftrightarrow n\in\left\{1;3;-1;5\right\}\)
\(Vậy:n\in\left\{1;3;-1;5\right\}\left(tm\right)\)
n nguyên nhé!
\(\frac{n+1}{n-2}=1+\frac{3}{n-2}\)Vì A có giá trị lớn nhất nên mẫu bé nhất >0
=> n=3=>A có GTLN là: 4
Vậy: Amax=4. Dấu "=" xảy ra khi: x=3
a) \(A=\frac{n+1}{n-2}\) (ĐK: \(x\ne5\))
\(A=\frac{n-2+3}{n-2}=\frac{x-2}{x-2}+\frac{3}{x-2}=1+\frac{3}{x-2}\)
\(Ư\left(3\right)=\left\{-3;-1;1;3\right\}\)
=> x - 2 = -3 => x = -1
x - 2 = -1 => x = 1
x - 2 = 1 => x = 3
x - 2 = 3 => x = 5
Vậy:
Cho biểu thức:
N=\(\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)
a) Tìm điều kiện xác định của biểu thức N. Rút gọn N
b) Tìm x để biểu thức N đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó
a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)
\(N=\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)
\(N=\frac{\left(x+2\right)^2}{x}.\frac{x+2-x^2}{x+2}-\frac{x^2+6x+4}{x}\)
\(N=\frac{\left(x+2\right)\left(x+2-x^2\right)-x^2-6x-4}{x}\)
\(N=\frac{x^2+2x-x^3+2x+4-2x^2-x^2-6x-4}{x}\)
\(N=\frac{-x^3-2x^2-2x}{x}\)
\(N=\frac{-x\left(x^2+2x+2\right)}{x}\)
\(N=-\left(x^2+2x+2\right)\)
b) \(N=-\left(x^2+2x+2\right)\)
\(\Leftrightarrow N=-\left(x^2+2x+1+1\right)\)
\(\Leftrightarrow N=-\left(x+1\right)^2-1\le-1\)
Max N = -1 \(\Leftrightarrow x=-1\)
Vậy .......................
bài 1: tìm x biết |x+2| + |2x-3| = 5
bài 2: tìm GTNN của biểu thức A = |x-102| + |2-x|
bài 3: cho biểu thức A = 3/(x-1)
a/ Tìm số nguyên x để A đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó
b/ tìm số nguyên x để A đạt giá trị lớn nhất và tìm giá trị lớn nhất đó
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
Cho biểu thức:A=\(\dfrac{2x-1}{x+2}\)
a) Tìm số nguyên x để biểu thức A là phân số
b)Tìm các số nguyên x để biểu thức A có giá trị là 1 số nguyên
c)Tìm các số nguyên x để biểu thức A đạt giá trị lớn nhất,giá trị nhỏ nhất
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3