cho 3 số thực dương a,b,c thỏa mãn a + b + c = 1. Tìm giá trị nhỏ nhất của
1/a^4 + 1/b^4 + 1/c^4
Cho a,b,c là các số thực dương thỏa mãn a+b=1 . Tìm giá trị nhỏ nhất của (2/ab) + (1/a^2+b^2) +(a^4+b^4/2)
Cho 4 số thực dương a,b,c,d thỏa mãn a+b+c+d = 4
Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\)
giỏi thì làm bài nÀY nèk
chứ mấy bác cứ đăng linh ta linh tinh lên online math
Linh ta linh tinh gì. ko biết làm thì tôi mới nhờ mọi người chứ
đây là câu cuối bài khảo sat trg tôi. ko làm được thì đừng phát biểu linh tinh
bạn hiểu nhầm rồi mình bảo mấy cái thằng nó cứ đăng vớ vẩn nên bảo cái bọn đấy làm bài này của bạn đó mà
Cho a, b, c là các số thực dương thỏa mãn: a+b+c=4, a.b.c=2.
Tìm giá trị nhỏ nhất của biểu thức: P= a^4+b^4+c^4.
cho ba số dương a,b,c thỏa mãn a+b+c=4 tìm giá trị nhỏ nhất của \(P=\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\)
\(P=\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{\left(1+1+2\right)^2}{a+b+c}=4\)
Suy ra \(minP=4\).
Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\frac{1}{a}=\frac{1}{b}=\frac{2}{c}\\a+b+c=4\\a,b,c>0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=1\\c=2\end{cases}}\).
Cho ba số thực dương a,b,c thỏa mãn điều kiện \(\frac{1}{a+2}+\frac{3}{b+4}\le\frac{c+1}{c+3}\) .Tìm giá trị nhỏ nhất của biểu thức Q=(a+1)(b+1)(c+1)
1.Cho 3 số thực dương a,b,c Tìm giá trị nhỏ nhất của
\(\dfrac{1}{\sqrt{ab}+2\sqrt{bc}+2\left(a+c\right)}-\dfrac{2}{5\sqrt{a+b+c}}\)
2.Cho 3 sô thực dương thỏa mãn 6a+3b+2a=abc
Tìm giá trị lớn nhất của Q = \(\dfrac{1}{\sqrt{a^2+1}}+\dfrac{2}{\sqrt{b^2+4}}+\dfrac{3}{\sqrt{c^2+9}}\)
Cho các số thực dương a, b, c thỏa mãn abc=1. Tìm giá trị lớn nhất của biểu thức
\(T=\frac{a}{b^4+c^4+a}+\frac{b}{c^4+a^4+b}+\frac{c}{b^4+a^4+c}\)
Theo đánh giá bởi Bunhiacopski ta dễ có:
\(\frac{a}{b^4+c^4+a}=\frac{a\left(1+1+a^3\right)}{\left(b^4+c^4+a\right)\left(1+1+a^3\right)}\le\frac{a^4+a+a}{\left(a^2+b^2+c^2\right)^2}\)
Tương tự rồi cộng lại ta được:
\(T\le\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\)
Ta đi chứng minh:
\(\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\le1\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge a^4+b^4+c^4+2a+2b+2c\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge a+b+c\)
Mà \(LHS\ge abc\left(a+b+c\right)=a+b+c\Rightarrow T\le1\)
Đẳng thức xảy ra tại a=b=c=1
Cho các số thực dương a,b,c thỏa mãn a + b + c ≥ 6, tìm giá trị nhỏ nhất của
R = a + b + c + \(\dfrac{1}{a}\) + \(\dfrac{1}{b}\) + \(\dfrac{1}{c}\) ≥ \(\dfrac{15}{2}\)
cho các số thực a,b,c dương thỏa mãn: \(ab+bc+ca=1\) . Tìm giá trị nhỏ nhất của biểu thức:
\(M=\frac{1}{a^2}+\frac{1}{ab}+\frac{4}{bc}+\frac{4}{c^2}\)
i don't no TT
mình chưa học tới