tìm các cặp số nguyên x y thoả mãn x^2(x-y)+y^2(y-x)=6xy
Tìm cặp số x nguyên và y nguyên thoả mãn :
a) 3xy + x - y = 2
b) 6xy - 2y + x = 14
Cho đa thức f(x) có các hệ số nguyên. Biết rằng f(1). f(2) = 35. Chứng minh rằng đa thức f(x) không có nghiệm nguyên
Giúp mình nhé
tìm các cặp số nguyên (x;y) thoả mãn:\(\dfrac{x}{3}-\dfrac{2}{y}=\dfrac{1}{2}\)
\(\dfrac{x}{3}-\dfrac{2}{y}=\dfrac{1}{2}\\ \Rightarrow\dfrac{2}{y}=\dfrac{x}{3}-\dfrac{1}{2}\\\Rightarrow \dfrac{2}{y}=\dfrac{2x-3}{6}\\ \Rightarrow y\left(2x-3\right)=2\cdot6\\ \Rightarrow y\left(2x-3\right)=12\)
mà `y in ZZ;x in ZZ`
`=>y in ZZ;2x-3 in ZZ`
`=>y;2x-3` thuộc ước nguyên của `12`
`=>y;2x-3 in {+-1;+-2;+-3;+-4;+-6;+-12}`
Ta có bảng sau :
`y` | `-1` | `-2` | `-3` | `-4` | `-6` | `-12` | `1` | `2` | `3` | `4` | `6` | `12` |
`2x-3` | `-1` | `-2` | `-3` | `-4` | `-6` | `-12` | `1` | `2` | `3` | `4` | `6` | `12` |
`x` | `1` | `1/2` | `0` | `-1/2` | `-3/2` | `-9/2` | `2` | `5/2` | `3` | `7/2` | `9/2` | `15/2` |
Vì `x;y in ZZ`
nên `(x;y)=(1;-1);(0;-3);(2;1);(3;3)`
tìm tất cả các cặp số nguyên [x;y] thoả mãn : x\((x+y)^2\)-y+1=0
x( x + y )2 - y + 1 = 0
<=> x( x2 + 2xy + y2 ) - y + 1 = 0
<=> x3 + 2x2y + xy2 - y + 1 = 0
<=> xy2 + ( 2x2 - 1 )y + x3 + 1 = 0 (*)
Coi (*) là phương trình bậc 2 ẩn y , x là tham số
(*) có nghiệm <=> Δ ≥ 0 <=> ( 2x2 - 1 )2 - 4x( x3 + 1 ) ≥ 0
<=> 4x4 - 4x2 + 1 - 4x4 - 4x ≥ 0
<=> -4x2 - 4x + 1 ≥ 0
<=> \(\frac{-1-\sqrt{2}}{2}\le x\le\frac{-1+\sqrt{2}}{2}\)
Vì x nguyên => x ∈ { -1 ; 0 }
+) Với x = -1 (*) trở thành -y2 + y = 0 <=> y( 1 - y ) = 0 <=> y = 0 (tm) hoặc y = 1 (tm)
+) Với x = 0 (*) trở thành -y + 1 = 0 <=> y = 1 (tm)
Vậy ( x ; y ) = { ( -1 ; 0 ) , ( -1 ; 1 ) , ( 0 ; 1 ) }
cậu ơi có thể giải bài này mà ko dùng denta đc ko ?
Chứng minh rằng tồn tại duy nhất cặp số (x; y) thoả mãn:\(x^2-2y^2=1\)(với x, y là các số nguyên tố). Tìm cặp số (x; y) đó
\(Giải.\)
\(x^2-2y^2=1\Leftrightarrow x^2-1=2y^2\Leftrightarrow\left(x+1\right)\left(x-1\right)=2y^2\left(chẵn\right)\)
Dễ thấy: x+1-(x-1)=2 nên 2 số trên cùng chẵn hoặc cùng lẻ=> 2 số trên cùng chẵn
=> 2y2 chia hết cho 4=>y2 chia hết cho 2
=> y chẵn =>y=2=>x2-8=1=>x=3 (thỏa mãn)
Vậy chỉ có duy nhất 1 cặp: (x,y)=(3;2) thỏa mãn
Dễ thấy: x+1-(x-1)=2 nên 2 số trên cùng chẵn hoặc cùng lẻ=> 2 số trên cùng chẵn
=> 2y2 chia hết cho 4=>y2 chia hết cho 2
=> y chẵn =>y=2=>x2-8=1=>x=3 (thỏa mãn)
Vậy chỉ có duy nhất 1 cặp: (x,y)=(3;2) thỏa mãn
tìm các cặp số nguyên x;y thoả mãn x^2 xy=2022x 2023y 2024
Tìm các cặp số nguyên x ; y thoả mãn x2 +x +3= y2
lai them 1 dong minh ban oi sao ko de anh shinichi luon
\(x^2+x+3=y^2\)
<=> 4 ( x2+x+3) = 4y2
<=> 4x2+4x+12=4y2
<=> 4x2+4x+1+11-4y2=0
<=> (2x+1)2-4y2= -11
<=> ( 2x +1 -2y) (2x+1+2y)=-11
Vì x,y thuộc Z nên 2x+1-2y và 2x+1+2y thuộc Z
=> 2x+1-2y thuộc Ư(11) và 2x +1+2y thuộc Ư(11)
Mà Ư(11)= { 1;-1;11;-11}
Ta có:
TH1: \(\begin{cases}2x+1-2y=1\\2x+1+2y=-11\end{cases}=>2x+1-2y+2x+1+2y=1+\left(-11\right)< =>4x+1=-10\)
< => x=\(\frac{-11}{4}\)( Không là số nguyên nên loại)
TH2: \(\hept{\begin{cases}2x+1-2y=-1\left(1\right)\\2x+1+2y=11\end{cases}=>2x+1-2y+2x+1+2y=-1+11}\)
<=> 4x+2=10 <=> x= 2 ( Là số nguyên )
Thay x=2 vào (1) ta có 2.2+1-2y=-1 <=> y= 3 ( là số nguyên )
TH3: \(\hept{\begin{cases}2x+1-2y=11\\2x+1+2y=-1\end{cases}}\)
Th4\(\hept{\begin{cases}2x+1-2y=-11\\2x+1+2y=1\end{cases}}\)
Trường hợp 3 và 4 bạn tự tính nhé!! Nếu x, y là số nguyên thì chọn , còn ko là số nguyên thì loại nhé!!
Học tốt ạ
tìm cặp số nguyên (x;y) thoả mãn: x+y+xy=2
x+y+xy=2
<=>x(y+1)+(y+1)=2+1
<=>(x+1)(y+1)=3
Ta có bảng:
x+1 | 1 | -1 |
y+1 | 3 | -3 |
x | 0 | -2 |
y | 2 | -4 |
Vậy các cặp (x;y) là (0;2);(-2;-4)
ST còn thiếu hai trường hợp là x=2 y=0 hoặc x=-4 y=-2
địt mẹ như cứt
Tìm tất cả các cặp số nguyên (x;y) thoả mãn: x^2 + 5y^2 + 4xy = 2023
Tìm tất cả các cặp số nguyên không âm thoả mãn: x-y=x2+xy+y2
Ta có: \(x-y=x^2+xy+y^2\Rightarrow x^2+\left(y-1\right)x+\left(y^2+y\right)=0\)
Coi phương trình trên là phương trình bậc hai theo ẩn x thì \(\Delta=\left(y-1\right)^2-4\left(y^2+y\right)=-3y^2-6y+1\)
Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(-3y^2-6y+1\ge0\Rightarrow\frac{-3-2\sqrt{3}}{3}\le y\le\frac{-3+2\sqrt{3}}{3}\)
Mà y là số nguyên không âm nên y = 0
Thay y = 0 vào phương trình, ta được: \(x=x^2\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy (x, y) = { (0; 0); (1; 0) }