tìm số tự nhiên n sao cho n^2-1 và 2^n+1 đều là số nguyên tố
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. Chứng tỏ rằng với n \(\in\)N thìn+1 và 7n+4 là hai số nguyên tố cùng nhau.
2. Tìm n\(\in\)N thì 2n+1 và 4n+1 là hai số nguyên tố cùng nhau.
3. Tìm số nguyên tố p sao cho p+2 và p+4 đều là số nguyên tố.
4. Tìm số tự nhiên n sao cho \(n^2\)+3 là số chính phương.
1.cho n=2.3.4.5.6.7 có
chứng tỏ 6 số tự nhiên liên tiếp sau đều là hợp số
2 .tìm n thuộc N sao cho n+8 chia hết cho n+1
3.tìm số tự nhiên p sao cho
a, 3p+5 là số nguyên tố
b,p+8 và p+10 là số nguyn tố
Bài 1: tìm số tự nhiên n sao cho n-1; n+1;n+5;n+7;n+11;n+13 đồng thời là số nguyên tố
Bài 2: tìm cấc số nguyên tố p sao cho p^3+p^2+11p+2 là số nguyên tố
Tìm số tự nhiên n cho
2n-1 và 2n+1 đều là các số nguyên tố
sai đề nếu n= 0 thì 2^0= 1. 1-1=0 ko là snt
1)Tìm ƯCLN(2n+1;9n+5) với n thuộc N
2)Tìm số nguyên tố p sao cho:p+4;p+10;p+14 đều là số nguyên tố
3)Tìm ba số tự nhiên lẻ liên tiếp đều là số nguyên tố
4)Tìm số tự nhiên a nhỏ nhất thỏa mãn:a chia cho 4 dư 3;a chia cho 17 dư 9;a chia cho 19 dư 13
5)Hãy tính tổng các ước số của A=(2^17).5
6)Cho S=1+5+5^2+5^3+...+5^20.Tìm số tự nhiên n thỏa mãn:4S+1=5^n
cho p là số nguyên tố lớn hơn 3. chứng minh p2 -1 chia hết cho 24
tìm số tự nhiên n sao cho n+1, n+77, n+99 đều là các số nguyên tố
cho a+b=c+d=e+f với a,b,c,d,e,f là các số nguyên tố phân biệt, nhỏ hơn 20. Tìm a+b
tìm số nguyên tố p sao cho p+2, p+94 là các số nguyên tố
Bài 1:Tìm số tự nhiên n sao cho 2^n+1 và 2^n-1 là số nguyên tố.
Bài 2:Tìm 3 số tự nhiên lẻ liên tiếp đồng thời là số nguyên tố.
Bài 3:Cho p là số nguyên tố ; p>3; q là số nguyên tố; q>3 và p>q. Chứng tỏ rằng (p^2-q^2) chia hết cho 24.
TRÌNH BÀY BÀI GIẢI GIÚP MÌNH NHA
Bài 1 : Tìm p sao cho p và p4+2 đều là số nguyên tố .
Bài 2 : TÌm các số tự nhiên n khác 0 sao cho x = 2n+2003 và y = 3n+2005 đều là số chính phương .
p=2 thì p^4+2 là hợp số
p=3 =>p^4+2=83 là số nguyên tố
với p>3 thì p có dang 3k+1 và 3k+2 thay vào chúng đều là hợp số
vậy p=3
giả sử x = 2n + 2003, y = 3n + 1005 là các số chính phương
Đặt 2n + 2003 = k2 (1) và 3n + 2005 = m2 (2) (k, m \(\in\) N)
trừ theo từng vế của (1), (2) ta có:
n + 2 = m2 - k2
khử n từ (1) và (2) => 3k2 - 2m2 = 1999 (3)
từ (1) => k là số lẻ . Đặt k = 2a + 1 ( a Z) . Khi đó : (3) <=> 3 (2a -1) 2 - 2m2 = 1999
<=> 2m2 = 12a2 + 12a - 1996 <=> m2 = 6a2 + 6a - 998 <=> m2 = 6a (a+1) - 1000 + 2 (4)
vì a(a+1) chia hết cho 2 nên 6a (a+1) chia hết cho 4, 1000 chia hết cho 4 , vì thế từ (4) => m2 chia 4 dư 2, vô lý
vậy ko tồn tại các số nguyên dương n thỏa mãn bài toán
Tìm số tự nhiên n nhỏ nhất sao cho: n; n + 2; n + 6 đều là số nguyên tố