3/4-(x+1(1/2))=(-1)^2024
CMR1×2-1/2!+2×3-1/2!+3×4-1/4!+...+2023×2024/2024!<2
TH1
42:x=6
x= 42 :6
X= 7
TH 2
36:x = 6
X = 36: 6
X= 6
Biết: x + (x - 1) - (x - 2) + (x - 3) - (x - 4) +.....+ (x - 2023) - (x -2024) =0
Vậy x =?
A. 0
B. -1011
C. -1012
D. -2024
Tính: \(S=C^0_{2024}+\dfrac{1}{2}.C^2_{2024}+\dfrac{1}{3}.C^4_{2024}+\dfrac{1}{4}.C^6_{2024}+...+\dfrac{1}{1013}.C^{2024}_{2024}\)
Tính: \(S=C^0_{2024}+\dfrac{1}{2}.C^2_{2024}+\dfrac{1}{3}.C^4_{2024}+\dfrac{1}{4}.C^6_{2024}+...+\dfrac{1}{1013}.C^{2024}_{2024}\)
Tính: \(S=C^0_{2024}+\dfrac{1}{2}.C^2_{2024}+\dfrac{1}{3}.C^4_{2024}+\dfrac{1}{4}.C^6_{2024}+...+\dfrac{1}{1013}.C^{2024}_{2024}\)
\(S=C^0_{2024}+\dfrac{1}{2}C^2_{2024}+\dfrac{1}{3}C^4_{2024}+\dfrac{1}{4}C^6_{2024}+...+\dfrac{1}{1013}C^{2024}_{2024}\)
Ta có :
\(\dfrac{1}{k+1}C^{2k-1}_n=\dfrac{1}{k+1}.\dfrac{n!}{\left(2k-1\right)!\left(n-2k+1\right)!}\)
\(=\dfrac{1}{n+1}.\dfrac{\left(n+1\right)!}{2k!\left[\left(n+1\right)-2k\right]!}\)
\(=\dfrac{1}{n+1}C^{2k}_{n+1}\)
\(\Rightarrow S_n=\dfrac{1}{n+1}\Sigma^{2k}_{k=0}C^{2k}_{n+1}=\dfrac{1}{n+1}\left(\Sigma^{2k}_{k=0}C^{2k-1}_{n+1}-C^0_{n+1}\right)=\dfrac{2^{2n-1}-1}{n+1}\)
\(\Rightarrow S=\dfrac{2^{2025}-1}{1013}\)
Tính: \(S=C^0_{2024}+\dfrac{1}{2}.C^2_{2024}+\dfrac{1}{3}.C^4_{2024}+\dfrac{1}{4}.C^6_{2024}+...+\dfrac{1}{1013}.C^{2024}_{2024}\)
S = C₀₂₀₂₄ + 12.C₂₀₂₄ + 13.C₂₀₂₄ + 14.C₂₀₂₄ + ... + 11013.C₂₀₂₄
= (C₀₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + ... + C₂₀₂₄) + (C₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + ... + C₂₀₂₄) + ... + (C₂₀₂₄)
= 11014.C₂₀₂₄
= 11014.
S = C₀₂₀₂₄ + 12.C₂₀₂₄ + 13.C₂₀₂₄ + 14.C₂₀₂₄ + ... + 11013.C₂₀₂₄
= (C₀₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + ... + C₂₀₂₄) + (C₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + ... + C₂₀₂₄) + ... + (C₂₀₂₄)
= 11014.C₂₀₂₄
= 11014.
Tính: \(S=C^0_{2024}+\dfrac{1}{2}.C^2_{2024}+\dfrac{1}{3}.C^4_{2024}+\dfrac{1}{4}.C^6_{2024}+...+\dfrac{1}{1013}.C^{2024}_{2024}\)
Tính: \(S=C^0_{2024}+\dfrac{1}{2}.C^2_{2024}+\dfrac{1}{3}.C^4_{2024}+\dfrac{1}{4}.C^6_{2024}+...+\dfrac{1}{1013}.C^{2024}_{2024}\)
Tính: \(S=C^0_{2024}+\dfrac{1}{2}.C^2_{2024}+\dfrac{1}{3}.C^4_{2024}+\dfrac{1}{4}.C^6_{2024}+...+\dfrac{1}{1013}.C^{2024}_{2024}\)