chứng minh rằng 1/n(n+1) =1/n -1/n+1 (với n thuộc N*)
giúp mik với các bn ơi
Chứng tỏ rằng với n thuộc dãy số tự nhiên thì 92 x n - 1 chia hết cho 2 và 5.
Các bn ơi giúp mik với.
\(9^{2n}=\left(9^2\right)^n=81^n=\overline{......1}\)
\(\Rightarrow9^{2n}-1=\overline{.....1}-1=\overline{....0}⋮2\text{ và }5\)
\(\Rightarrowđpcm\)
9^2n =81^n có CSTC là 1 =. 9^2n-1 có CSTC là 0 => 9^2n-1 chia hết cho 2vaf 5
ta có: 92n - 1 = (92)n = 81n -1
= (...1)-1 = (...0) chia hết cho 2 và 5
#
Chứng minh biểu thức (n-1).(n+4)-(n-4).(n+1) luôn chia hết cho 5 với n thuộc Z
CÁC BN GIÚP MIK VS NHEN!!! THANK U NHÌU NHÌU !!! ^,^!!!
Theo mình là đề bài sai.Giả sử nếu n = 2 thì biểu thức = 1.6-(-2).3 = 12 không chia hết cho 5
Theo mình phải là CHIA HẾT CHO 6
Câu này khá dễ bạn ạ
(n-1)(n+4)-(n-4)(n+1)
= (n^2+3n-4)-(n^2-3n-4)
=6n luôn chia hết cho 6 với n thuộc Z ^_^
Ukm. mik lỡ nhập đề bài sai sorry bạn nha!!!
cảm ơn bạn nhìu
Chứng tỏ rằng 3n + 1/ 3n + 4 là phân số tối giản với n thuộc N.
Giúp mik với các bạn ơi!
Gọi \(ƯCLN\left(3n+1;3n+4\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}3n+1⋮d\\3n+4⋮d\end{cases}}\)
\(\Rightarrow\)\(\left(3n+1\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow\)\(\left(-3\right)⋮d\)
\(\Rightarrow\)\(d\inƯ\left(-3\right)=\left\{1;-1;3;-3\right\}\)
Lại có :
\(3n⋮3\)\(;\)\(3n⋮\left(-3\right)\)
\(\Rightarrow\)\(3n+1\) không chia hết cho \(3\) và \(-3\)
\(\Rightarrow\)\(ƯCLN\left(3n+1;3n+4\right)=\left\{1;-1\right\}\)
Vậy \(\frac{3n+1}{3n+4}\) là phân số tối giản với mọi \(n\inℕ\)
Chúc bạn học tốt ~
1. Tìm xy thuộc N sao cho 12xy chia hết cho 71.
2. Chứng minh rằng 11...1 ( n số 1) - n chia hết cho 3 với n thuộc N*.
3. Chứng minh rằng 2n+11...1 ( n số 1) chia hết cho 3.
Các bạn giúp mình với. Mình bị bí rồi!
Chứng minh rằng:
a. a/n(n+a)=1/n-1/n+a
Các bn giúp mk với!! mk cần gấp!!
Dạ, ĐK: \(n,a\inℕ^∗\)bn nhé !
\(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}\)
\(=\frac{\left(n+a\right)-n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
Do đó : \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)
Mk cảm ơn bn nhé :))
Chứng minh rằng với mọi n thuộc N thi UCLN(n; 2n+1) = 1
Giúp mình nhé các bạn !
Giả sử \(ƯCLN\left(n,2n+1\right)=d\)
\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)
\(\Rightarrow2n+1-2n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+1,n\right)=1\)
Vậy \(ƯCLN\left(2n+1,n\right)=1\)với mọi \(n\in N\)
Chứng minh rằng:
a.A=10^28+8 chia hết cho 72
b.B=10^n+18^n-1 chia hết cho 27,với n thuộc N
mk cần gấp các bn giúp mk nha
a) Ta có : A = 1028 + 8
= 100...0 + 8 (28 chữ số 0)
= 100...008 (27 chữ số 0)
Nhận xét: 1028 + 8 có 3 chữ số tận cùng là 008
lại có : Tổng của 3 chữ số này là : 0 + 0 + 8 = 8 => chia hết cho 8
=> 1028 + 8 \(⋮\)8 (1)
Nhận xét : 1028 + 8 = 100...008 (27 chữ số 0)
=> Tổng các chữ số của số trên là : 1 + 0 + 0 + .... + 0 + 0 + 8 = 9 \(⋮\)9 (27 số hạng 0)
=> 1028 + 8 \(⋮\)9(2)
Từ (1) và (2) ta có :
ƯCLN(8,9) = 1
=> 1028 + 8 \(⋮\)BCNN(8,9)
=> 1028 + 8 \(⋮\)72
Ta có :
\(10^{28}+8=100...008\)(27 chữ số 0 )
Xét \(008⋮8\Rightarrow10^{28}+8⋮8\left(1\right)\)
Xét \(1+27\times0+8=9⋮9\Rightarrow10^{28}+8⋮9\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow10^{28}+8⋮72\)
1. 3.5.....(2n-1)/(n+1)(n+2)(n+3) = 1/2n với n thuộc n*
( đề bài là chứng minh rằng )
giúp mình với cảm ơn
Chứng minh rằng với mọi số tự nhiên n thuộc N* các cặp số nguyên tố cùng nhau.
a) n và n+1
b) 2n + 2 và 2n+3
c) n và 2n+1
d) 2n+1 và 3n+1
Giúp mik đi mà.