cho 52 số tự nhiên bất kì ,CMR luôn tồn tại trong đó 2 số có tổng hoặc hiệu chia hết cho 100
Bài 1: CMR từ 102 số tự nhiên bất kì luôn có thể tồn tại 2 số có tổng hoặc hiệu chia hết cho 200.
Bài 2: CMR từ 10 số tự nhiên bất kì (a1, a2, a3, ... , a10) thì luôn tồn tại 4 số có tổng chia hết cho 4.
Bài 3: CMR từ 13 số tự nhiên bất kì luôn tồn tại 4 số có tổng chia hết cho 4.
Chứng minh rằng trong 10 số tự nhiên bất kì luôn tồn tại hai số có tổng hoặc hiệu chia hết cho 17
Chứng minh rằng trong 10 số tự nhiên bất kì luôn tồn tại hai số có tổng hoặc hiệu chia hết cho 17
Cho 52 số tự nhiên bất bỳ. CMR: Luôn tồn tại 2 số có tổng hoặc hiệu chia hết cho 100.
( Ai giúp mình với mình thanks cho )
cho 52 số tự nhiên bất kì .CMR trong 52 số này luôn tìm được 1 hay 1 số số có tổng hoặc hiệu chia hết cho 1000
CMR trong 6 số tự nhiên bất kì tồn tại 2 số có tổng hoặc hiệu chia hết cho 9
cho 52 số tự nhiên bất kì, chứng minh rằng tổng hoặc hiệu cua 2 số tự nhiên bất kì luôn chia hết cho 100
Chứng minh trong 1010 số tự nhiên bất kì luôn tồn tại 2 số sao cho tổng hoặc hiệu của chúng chia hết cho 2015
Chứng minh trong 27 số tự nhiên bất kì luôn tồn tại 2 số sao cho tổng hoặc hiệu của chúng chia hết cho 50
CMR: trong 42 số tự nhiên bất kì luôn tồn tại 2 số có hiệu chia hết cho 41
Theo nguyên tắc Di-rich-lê ta có: Trong 42 số tự nhiên bất kì có it nhất 2 số khi chia cho 41 có cùng số dư.
=> Hiệu cuả 2 số đó chia hết cho 41
=> ĐPCM