cho n thuộc N* chứng minh (2^2)^10n+1 +19 và (2^3)^4n+1 + 5 là hợp số
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho \(n\in N^+\) Chứng minh rằng \(2^{2^{10n+1}}+19=2^{3^{4n+1}}+3^{2^{4n+1}}+5\)là hợp số
cho n thuoc N* chung minh (2^2)^10n+1 +19 va (2^3)^4n+1 + 5 la hop so
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1)Chứng minh rằng với n thuộc N* phân số sau là phân số tối giản 3n-2/4n-3
2)tìm các số tự nhiên n để P/S sau là P/S tối giản
3)tìm n thuộc Z, biết:
a)C=n+1/n-2
b)D=10n/n-3
c)E=n+1/n-3
d)F=12/3n-1
giúp mình nha rồi mình tick cho!
1)
gọi ƯC(3n-2,4n-3) là d
=>\(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1;-1\)
=>ƯC(3n-2,4n-3)={1;-1}
=>\(\frac{3n-2}{4n-3}\)là p/số tối giản
vậy...
1, CMR:
(32^4n+1) + (23^4n+1)+5 chia hết cho 11 với mọi STN n
2,CMR:
a, 220119^69+11969^220+69220^119 chia hết cho 11
b, 22^6n+3 chia hết cho 19 (n là STN)
c, 22^2n+1+3 chia hết cho 7 (n là STN)
d, 22^10n+1+19 là hợp số (n là STN)
3, TÌm SNT p sao cho: 2p+1 chia hết cho p
cho n thuộc N* .Chứng minh rằng các số sau là hợp số
a,A=(2^2^2n +1)+3 b,B=(2^2^4n+1)+7 c,C=(2^2^6n+2)+13
Chứng minh
a) 22^(10n+1)+19 chia hết cho 23
b) 72^(4n+1)+43^(4n+1)--65 chia het cho 100
thám tử lưng danh conan à
chứng tỏ phân số sau tối giản:
3n+1/4n+1 6n+2/10n+3 (với n thuộc N)
Gọi d=ƯCLN(3n+1;4n+1)
\(\Rightarrow\)3n+1 \(⋮\)d và 4n+1\(⋮\)d
\(\Rightarrow\)(3n+1).4\(⋮\)d và (4n+1).3\(⋮\)d
hay 12n+4\(⋮\)d và 12n+3 \(⋮\)d
\(\Rightarrow\)\([\)(12n+4)-(12n+3)\(]\)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)1=d
Vậy \(\frac{3n+1}{4n+1}\)là phân số tối giản.
Phần còn lại làm tương tự nha bạn.