H24

Những câu hỏi liên quan
ND
Xem chi tiết
NC
Xem chi tiết
DY
5 tháng 8 2018 lúc 9:58

a) 3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 


=>S=[n.(n+1).(n+2)] : 3

Bình luận (0)
NC
29 tháng 8 2022 lúc 21:24

bb

Bình luận (0)
NN
Xem chi tiết
TA
14 tháng 11 2018 lúc 19:59

1)A=987

Bình luận (0)
BN
Xem chi tiết
NQ
11 tháng 8 2015 lúc 6:05

\(3A=3+3^2+...3^{2003}\)

\(3A-A=\left(3-3\right)+\left(3^2-3^2\right)+...+3^{2003}-1\)

\(\Leftrightarrow\Leftrightarrow A=\frac{3^{2003}-1}{2}\)

 

Bình luận (0)
ND
Xem chi tiết
DV
Xem chi tiết
NT
5 tháng 8 2023 lúc 17:22

\(S=\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...\dfrac{1}{nx\left(n+1\right)}\)

\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(S=1-\dfrac{1}{n+1}=\dfrac{n}{n+1}\)

\(T=\dfrac{3}{1x2}+\dfrac{3}{2x3}+\dfrac{3}{3x4}+\dfrac{3}{4x5}+...\dfrac{3}{nx\left(n+1\right)}\)

\(T=3x\left[\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...\dfrac{1}{nx\left(n+1\right)}\right]\)

\(T=3x\left[1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...\dfrac{1}{n}-\dfrac{1}{n+1}\right]\)

\(T=3x\left(1-\dfrac{1}{n+1}\right)=\dfrac{3xn}{n+1}\)

Bình luận (0)
NM
Xem chi tiết
HP
Xem chi tiết
DV
3 tháng 7 2016 lúc 10:31

a) \(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a-n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)

b) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2008.2009}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2008}-\frac{1}{2009}=1-\frac{1}{2009}=\frac{2008}{2009}\)

c) \(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{94.97}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{94}-\frac{1}{97}=1-\frac{1}{97}=\frac{96}{97}\)

Bình luận (1)
LT
Xem chi tiết