chứng tỏ rằng:3n/3n+1(n thuộc Z)là phân số tối giản
chứng tỏ rằng 3n/3n+1 ( n thuộc N)là phân số tối giản
Ta có : \(\frac{3n}{3n+1}\) với \(n\inℕ\)
Mà 3n và 3n+1 là 2 số tự nhiên liên tiếp
Vì 2 số tự nhiên liên tiếp có ƯCLN là 1
\(\Rightarrow\)ƯCLN(3n, 3n+1)=1 nên phân số \(\frac{3n}{3n+1}\)tối giản(đpcm)
Bạn cũng có chứng minh bằng cách tìm ƯCLN(3n,3n+1)=1 nhé!
Chứng tỏ rằng 3n/3n+1 (n thuộc N) là phân số tối giản
Gọi d là ƯCLN (3n;3n+1) ( d thuộc N*)
=> 3a+1-3a chia hết chi d
=> 1 chia hết cho d
mà d thuộc N* => d=1
=> \(\frac{3n}{3n+1}\)là phân số tối giản
3n và 3n +1 là 2 số TN liên tiếp nên ƯCLN(3n, 3n+1)=1------>3n/3n+1 là phân số tối giản
Chứng tỏ rằng 3n/3n+1 (n thuộc N) là phân số tối giản
Ta có 3n; 3n + 1 là 2 số tự nhiên liên tiếp
\(\Rightarrow\) 3n; 3n + 1 là 2 số nguyên tố cùng nhau
\(\Rightarrow\frac{3n}{3n+1}\) là phân số tối giản
chứng tỏ rằng 3n/3n+1 ( n thuộc N) là phân số tối giản
GỌI ƯCLN(3n;3n+1)=d
=>3n chia hết cho d; 3n+1chia hết cho d
=>3n+1-3n=1chia hết cho d=> d=1
=> 3n/3n+1 là phân số tối giản
Gọi ƯCLN 3n;3n+1 là d
=> 3n chia hết cho d;3n+1 chia hết cho d
=> 1chia hết cho d=> d=1
=> 3n và 3n+1 là ntố cùng nhau
=> phân số tối giản
chứng tỏ rằng:
a) 15n+1/ 30n+1 là phân số tối giản (n thuộc Z )
b) n3+2n/n4+3n2+1 là phân số tối giản ( n thuộc Z )
Chứng tỏ rằng n+1 phần 3n+2 (n thuộc Z) là phân số tối giản. Giúp mình nha!
Gọi \(\left(n+1,3n+2\right)=d\) \(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3n+3⋮d\\3n+2⋮d\end{cases}}\)
\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\)
\(\Rightarrow3n+3-3n-2⋮d\)
\(\Rightarrow1⋮d\)
Mà \(d\inℕ^∗\) \(\Rightarrow d=1\)
\(\Rightarrow\left(n+1,3n+2\right)=1\)
\(\Rightarrow\) Phân số \(\frac{n+1}{3n+2}\) tối giản (đpcm)
\(\frac{n+1}{3n+2}\left(n\in Z\right)\)
Đặt \(n+1;3n+2=d\left(d\inℕ^∗\right)\)
\(n+1⋮d\Rightarrow3n+3⋮d\)(1)
\(3n+2⋮d\)(2)
Lấy (1) - (2) suy ra :
\(3n+3-3n-2⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Chứng tỏ phân số 2n+1/3n+2 là phân số tối giản với mọi n thuộc Z
Gọi d là ƯCLN của 2n + 1 và 3 n + 2
Ta có
2n+1 chia hết cho d => 3 ( 2n+1) chia hết cho d => 6n +3 chia hết cho d (1)
3n + 1 chia hết cho d => 2(3n+1) chia hết cho d => 6n + 4 Chia hết cho d ( 2 )
Từ (1), (2)
=> 6n+4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN ( 2n + 1 : 3n + 2 ) = 1
=> Phân số 2n+1/3n+2 tối giản với mọi n thuộc Z
Phương pháp chứng minh 1 p/s tối giản là :
Chứng minh ƯCLN của tử và mẫu = 1
Còn cách làm : Tự làm
Gọi d= ƯCLN (2n+1, 3n+2)(d thuộc N*)
\(\Rightarrow\)2n+1\(⋮\)d
3n+2\(⋮\)d
\(\Rightarrow\)(2n+1).3\(⋮\)d
(3n+2).2\(⋮\)d
\(\Rightarrow\)6n+3\(⋮\)d
6n+4\(⋮\)d
\(\Rightarrow\)(6n+4)-(6n+3)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d=1
\(\Rightarrow\)2n+1/3n+2 là phân số tối giản.
\(\Rightarrow\)Đpcm.
Cho n thuộc Z. Chứng tỏ các phân số sau là phân số tối giản:
a) n + 7 n + 6
b) 3 n + 2 n + 1
Chú ý rằng, phân số tối giản là phân số mà tử và mẫu chỉ có ước chung là ±1.
a) Gọi d là ước chung của n + 7 và n + 6. Ta chứng minh d = ±1 bằng cách xét hiệu (n + 7) - (n + 6) chia hết cho d.
b) Gọi d là ước chung của 3n + 2 và n +1. Ta chứng minh d = ±1 bằng cách xét hiệu (3n + 2) - 3.(n +1) chia hết cho d.
Chứng tỏ rằng 3n + 1/ 3n + 4 là phân số tối giản với n thuộc N.
Giúp mik với các bạn ơi!
Gọi \(ƯCLN\left(3n+1;3n+4\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}3n+1⋮d\\3n+4⋮d\end{cases}}\)
\(\Rightarrow\)\(\left(3n+1\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow\)\(\left(-3\right)⋮d\)
\(\Rightarrow\)\(d\inƯ\left(-3\right)=\left\{1;-1;3;-3\right\}\)
Lại có :
\(3n⋮3\)\(;\)\(3n⋮\left(-3\right)\)
\(\Rightarrow\)\(3n+1\) không chia hết cho \(3\) và \(-3\)
\(\Rightarrow\)\(ƯCLN\left(3n+1;3n+4\right)=\left\{1;-1\right\}\)
Vậy \(\frac{3n+1}{3n+4}\) là phân số tối giản với mọi \(n\inℕ\)
Chúc bạn học tốt ~