Giúp vs ạaa
(101+102+103+...+200) + (-1-2-3-...-100)
1+2+3+4+5+.....+100-101-102-103-....-200=
\(\text{1+2+3+4+5+...+100-101-102-103-...-200}\)
\(\text{=1+2+3+4+5+...+100-(100+1)-(100+2)-(100+3)-...-(100+100)}\)
\(\text{=1+2+3+4+5+...+100-100-1-100-2-100-3-...-100-100}\)
\(\text{=(1+2+3+4+5+...+100-1-2-3-...-100)-100-100-100-...-100}\)(có 100 số 100)
\(=0-100-100-100-...-100\)(có 100 số 100)
\(=-10000\)
Tính hợp lí:
a, 25 - (62 + 25 - 12)
b, -24 - (68 - 24) + 2.[34 + (-94)]
c, (101 + 102 + 103 + .... + 200) + (-1 - 2 - 3 - ..... - 100)
a, =25- 62-25 +12
= (25-25)+12-62
= -50
b, = -24 -68+24 + 2. (-60)
= (-24+24)-68 + -120
= -188
c,
A=1/100+1/101+1/102+1/103+...+1/200.So sanh A voi 3/4
A=\(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)
(Sử dung phương pháp chặn số đầu)
\(\frac{1}{100}\)>\(\frac{1}{101}\)
\(\frac{1}{100}\)>\(\frac{1}{102}\)
...
\(\frac{1}{100}\)>\(\frac{1}{200}\)
nên \(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)> \(\frac{1}{100}\)+\(\frac{1}{100}\)+...+\(\frac{1}{100}\)(có 101 phân số)
\(\Rightarrow\)\(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)>101.\(\frac{1}{100}\)=\(\frac{101}{100}\)>1>\(\frac{3}{4}\)
\(\Rightarrow\)A >\(\frac{3}{4}\)
Cho A = 1/101 + 1/102 + 1/103 + ... + 1/200
1/ So sánh 1/101 với 1/102 ; ... ; 1/101 với 1/200
2/ Chứng minh: A <1
Giúp mình đi mà :v
1/ Ta có : tất cả các p/s ở tổng A đều có tử bằng 1 . Mà MS 101 < 102 ; 103 ; ... ; < 200 .
Nên 1/101 là p/s lớn nhất ( lớn hơn 1/102 ; 1/103 ; ... ; 1/200 )
2/ Tổng A có phân số là : ( 200 - 101 ) : 1 + 1 = 100 (phân số ) .
Nếu thay cả 100 p/s bằng p/s lớn nhất : 1/101 thì tổng A = 1/101 . 100 = 100/101 < 1 .
=> 1/101 + 1/102 + 1/103 + ... + 1/200 ( 100p/s ) < 1/101 + 1/101 + 1/101 + ... + 1/101 (100 p/s ) < 1 .
Vậy : A < 1
So sánh:
a)\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\) với 1
b)\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{149}+\dfrac{1}{150}\) với\(\dfrac{1}{3}\)
c)\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\) với \(\dfrac{7}{12}\)
c) P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
Dễ thấy \(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}.50=\dfrac{1}{3}\)(1)
Tương tự
\(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>50.\dfrac{1}{200}=\dfrac{1}{4}\)(2)
Từ (1) và (2) ta được
\(P>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\)
P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
\(\overline{50\text{ hạng tử }}\) \(\overline{50\text{ hạng tử }}\)
\(< \left(\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\right)+\left(\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\right)\)
\(=\dfrac{1}{100}.50+\dfrac{1}{150}.50=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
\(\Rightarrow P< \dfrac{5}{6}< 1\)
a So Sánh : S = 1/101 + 1/102 + 1/103 + ... + 1/109 với 9/100
b Chứng tỏ S không phải là số tự nhiên biết : S = 1/101 + 1/102 + 1/103 + ... + 1/200
b) Ta có: \(\frac{1}{101}>0\)
\(\frac{1}{102}>0\)
...............,....
\(\frac{1}{200}>0\)
\(\Rightarrow S>0\left(1\right)\)
Lại có: \(\frac{1}{101}< \frac{1}{100}\)
\(\frac{1}{102}< \frac{1}{100}\)
......................
\(\frac{1}{200}< \frac{1}{100}\)
\(\Rightarrow S< \frac{1}{100}.100\)
\(\Rightarrow S< 1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow0< S< 1\)
Vậy S ko là số tự nhiên
a, ta có 1/101<1/100; 1/102<1/100;...;1/109<1/100
=> S=1/101+1/102+...+1/109< 1/100+1/100+...+1/100=9/100
=>S<9/100
b,ta thấy S luôn >0
S=1/101+1/102+...+1/200<1/100+1/100+...+1/100=1
=>S<1
=>0<S<1 => S không phải số tự nhiên
\(\frac{1}{101}< \frac{1}{100};\frac{1}{102}< \frac{1}{100};\frac{1}{103}< \frac{1}{100};......;\frac{1}{109}< \frac{1}{100}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{109}< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\)
\(\Rightarrow S< 9\cdot\frac{1}{100}\)
\(\Rightarrow S< \frac{9}{100}\)
Vậy \(S< \frac{9}{100}\)
Giúp mình 5 câu này nhé . Ai làm đc cả 5 câu cho 10 điểm luôn ( Nếu đúng )
1/Cho A= 1/101+1/102+1/103+...+1/150
a) So sánh 1/150 với 1/101;...; 1/150 với 1/149 <----------------KO PHẢI LÀM
b) Chứng minh : A > 1/3
2/ Cho A= 1/101+1/102+1/103+...+1/200
a) So sánh: 1/101+1/102+...+1/150với 1/3 và 1/151+1/152+...+1/200 với 1/4
b) Chứng minh: A > 7/12
3/Cho A= 1/101+1/102+...+1/200
Chứng minh: 1/2 < A < 1
4/ Cho A = 1/101+1/102+1/103+...+1/150. Chứng minh: 1/3 < A < 1/2
5/ Chứng minh: 1/5+1/14+1/28 < 1/3
CHÚC CÁC BẠN THÀNH CÔNG
CÁC BẠN CHỈ CẦN GIÚP MÌNH ÍT NHẤT 2 CÂU THÔI
j mà nhìu zu zậy làm bao giờ mới xong
Giải giúp mk bài này với
A = 1/101 + 1/102 + 1/103 + ... + 1/200
So sánh A với 3/4
A=1/100+1/101+1/102+1/103+...+1/200 chưng minh a>5/8