cho các số thực x, y sao cho x + 2y, 2x-y là số hữu tỷ. CM x, y là số hữu tỉ
cho x,y,z là các số hữu tỉ khác 0 , sao cho 2x+2y-z/z=2x-y+2z/y=-x+2y+2z/x , tính M=(x+y).(y+z).(z+x)/8xyz
1) Tìm x,y là số hữu tỉ sao cho (2x-3).\(\sqrt{2}\)=3-x+2y
2) Tìm số hữu tỉ x,y sao cho: x-\(\frac{1}{x}\) là số nguyên
Mai nộp!!!
cho x,y,z là các số hữu tỉ khác 0 , sao cho :\(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x}\)
tính giá trị biểu thức M=(x+y)(y+z)(z+x)/8xyz
\(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x} \)
=>\(\frac{2x+2y-z}{z}+3=\frac{2x-y+2z}{y}+3=\frac{-x+2y+2z}{x}+3\)
=>\(\frac{2x+2y+2z}{z}=\frac{2x+2y+2z}{y}=\frac{2x+2y+2z}{x}\)
=>\(\frac{x+y+z}{z}=\frac{x+y+z}{y}=\frac{x+y+z}{x}\)
=>\(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)
Với \(x+y+z=0\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{-xyz}{8xyz}=-\frac{1}{8}\)
Với \(x=y=z\)\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{2x.2y.2z}{8xyz}=\frac{8xyz}{8xyz}=1\)
Cho x, y là số hữu tỉ khác 1 thỏa mãn: \(\dfrac{1-2x}{1-x}+\dfrac{1-2y}{1-y}=1\)
Chứng minh \(M=x^2+y^2-xy\) là bình phương của một số hữu tỉ
Cho x,y,z là các số hữu tỉ khác 0 oả mãn: 2x+2y-z / z = 2x-y+2z / y= -x+2y+2z / x
Tính B= (x+y)(y+z)(z+x)/8xyz
Xét xem các số x và y có thể là số vô tỷ không nếu biết :
a, x + và x - y đều là số hữu tỉ
b, x + y và x/y đều là số hữu tỉ
a) Ta có: \(\frac{\left(x+y\right)+\left(x-y\right)}{2}=x\)( x + y và x - y là số hữu tỉ nên \(\frac{\left(x+y\right)+\left(x-y\right)}{2}\)là số hữu tỉ hay x là số hữu tỉ)
\(\frac{\left(x+y\right)-\left(x-y\right)}{2}=y\)( x + y và x - y là số hữu tỉ nên \(\frac{\left(x+y\right)+\left(x-y\right)}{2}\)là số hữu tỉ hay y là số hữu tỉ)
b) x và y có thể là số vô tỉ
VD: \(x=\sqrt{6};y=-\sqrt{6}\)
\(\Rightarrow\hept{\begin{cases}x+y=0\\\frac{x}{y}=-1\end{cases}}\)(đều là số hữu tỉ)
a, \(x=\frac{\left(x+y\right)+\left(x-y\right)}{2}\) ; \(y=\frac{\left(x+y\right)-\left(x-y\right)}{2}\)
tổng, hiệu của 2 số hữu tỉ là một số hữu tỉ. Thương của một số hữu tỉ với một số hữu tỉ khác 0 cùng là một số hữu tỉ.
Vậy x,y đều là các số hữu tỉ không thể là số vô tỉ.
b, x và y có thể là số vô tỉ . Chẳng hạn \(x=-\sqrt{2}\) ; \(y=\sqrt{2}\) thì \(x+y=-\sqrt{2}+\sqrt{2}=0\)
\(\frac{x}{y}=\frac{-\sqrt{2}}{\sqrt{2}}=-1\)
Cho x, y là các số hữu tỉ khác 1 thỏa mãn: \(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\)
Chứng minh rằng: \(_{M=x^2+y^2-xy}\)là bình phương của một số hữu tỉ
ta có
\(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\Leftrightarrow\left(1-2x\right)\left(1-y\right)+\left(1-2y\right)\left(1-x\right)=\left(1-x\right)\left(1-y\right)\)
\(\Leftrightarrow1-2\left(x+y\right)+3xy=0\)
Vậy \(M=x^2+y^2-xy+\left(1-2\left(x+y\right)+3xy\right)=\left(x+y+1\right)^2\)
vậy ta có đpcm
cho x,y là số hữu tỷ dương sao cho x3+y3=2x2y2
chứng minh rằng:giá trị biểu thức \(\sqrt{1-\frac{1}{xy}}\).là số hữu tỷ
Ta có : \(x^3+y^3=2x^2y^2\Rightarrow\left(x^3+y^3\right)^2=4x^4y^4\)
\(x^6+y^6+2x^3y^3=4x^4y^4\Rightarrow x^6+y^6-2x^3y^3=4x^4y^4-4x^3y^3\)
\(\left(x^3-y^3\right)^2=4x^3y^3\left(xy-1\right)\Rightarrow xy-1=\frac{\left(x^3-y^3\right)^2}{4x^3y^3}\)
\(\frac{xy-1}{xy}=\frac{\left(x^3-y^3\right)^2}{4x^4y^4}\) (chia cả 2 vế cho xy)\(\Rightarrow1-\frac{1}{xy}=\frac{\left(x^3-y^3\right)^2}{4x^4y^4}\)
\(\Rightarrow\sqrt{1-\frac{1}{xy}}=\frac{x^3-y^3}{2x^2y^2}\)
\(x^3+y^3=2x^2y^2\)
<=> \(\left(x^3+y^3\right)^2=4x^4y^4\)
<=> \(\left(x^3-y^3\right)^2=4x^4y^4-4x^3y^3\)
<=> \(\left(x^3-y^3\right)^2=4x^4y^4\left(1-\frac{1}{xy}\right)\)
<=> \(1-\frac{1}{xy}=\frac{\left(x^3-y^3\right)^2}{4x^4y^4}\)
<=> \(\sqrt{1-\frac{1}{xy}}=\frac{\left|x^3-y^3\right|}{2x^2y^2}\) là số hữu tỉ
Cho A=\(\sqrt{1+\frac{1}{xy}}\) biết x và y đều là số hữu tỷ và \(^{x^3+y^3=2x^2y^2}\) chứng minh rằng A cũng là số hữu tỷ