Chứng minh rằng
1/5+1/13+1/25+1/41+1/61+1/85+1/113 < 2
Bài này mk ko hiểu.Giải hộ mk vs >.<
ai giúp mk bài này với, nhanh lên nha
1/5+1/13+1/25+1/41+1/61+1/85+1/113<1/2
Chứng minh rằng: 1/3+1/13+1/25+1/41+1/61+1/85+1/113<2
chung minh rang:
1/5+1/13+1/25+1/41+1/61+1/85+1/113<1/2
1/5+1/13+1/25+1/41+1/61+1/85+1/113
=1/5+(1/13+1/25+1/41)+(1/85+1/61+1/113)<15+1/12+1/12+1/12+1/60+1/60+1/60
..............................................................<1/5+1/4+1/20
..............................................................<4/20+5/20+1/20
..............................................................<1/2
Cảm ơn nhiều (đúng lúc đang cần,hì ,hì)
chứng minh \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}+\frac{1}{61}+\frac{1}{85}+\frac{1}{113}<\frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}+\frac{1}{61}+\frac{1}{85}+\frac{1}{113}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{25}+\frac{1}{41}\right)+\left(\frac{1}{61}+\frac{1}{85}+\frac{1}{113}\right)\)
< \(\frac{1}{5}+\frac{1}{12}.3+\frac{1}{60}.3=\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{4}{20}+\frac{5}{20}+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)(đpcm)
ê cho hỏi tại sao lại ra < \(\frac{1}{5}+\frac{1}{12}.3+\frac{1}{60}.3\)
Chứng minh:B=\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+\dfrac{1}{41}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{113}< \dfrac{1}{2}\)
Giúp mik vs cb ! Tối nay mik đi học rồi !
Hơi nhầm xíu 113 . 7^2+8^2=113 cứ tưởng 112. Hơi ngáo tí =[[
Lời giải
Biến đổi tương đương ta được: \(L=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+\dfrac{1}{41}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{113}=\dfrac{1}{1^2+2^2}+\dfrac{1}{2^2+3^2}+\dfrac{1}{3^2+4^2}+\dfrac{1}{4^2+5^2}+\dfrac{1}{5^2+6^2}+\dfrac{1}{6^2+7^2}+\dfrac{1}{7^2+8^2}\)
\(L=\dfrac{1}{1^2+\left(1+1\right)^2}+\dfrac{1}{2^2+\left(2+1\right)^2}+...+\dfrac{1}{7^2+\left(7+1\right)^2}\)
Chứng minh 1 bđt cơ bản sau: \(n^2+\left(n+1\right)^2>2n\left(n+1\right)\) thật vậy:
\(n^2+\left(n+1\right)^2=n^2+n^2+2n+1=2n^2+2n+1=2n\left(n+1\right)+1>2n\left(n+1\right)\)
\(\Rightarrow\dfrac{1}{n^2+\left(n+1\right)^2}< \dfrac{1}{2n\left(n+1\right)}\)
trở lại bài toán ta có: \(L< \dfrac{1}{2.1.2}+\dfrac{1}{2.2.3}+...+\dfrac{1}{2.7.8}\)
\(L< \dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+..+\dfrac{1}{7.8}\right)=\dfrac{1}{2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..+\dfrac{1}{7}-\dfrac{1}{8}\right)=\dfrac{1}{2}\left(1-\dfrac{1}{8}\right)=\dfrac{1}{2}-\dfrac{1}{16}< \dfrac{1}{2}\left(đpcm\right)\)
Đề sai đúng hk? CHỗ kia 112 chứ lấy đâu ra 113
p/s : 7^2+8^2=112. =))
Nếu cứ khăng khăng là 113 đúng thì bạn hãy cứ giữ suy nghĩ đó đi.
Đề bài tổng quát:
\(B=\dfrac{1}{n_1^2+\left(n_1+1\right)^2}+\dfrac{1}{n^2_2+\left(n_2+1\right)^2}+...+\dfrac{1}{n^2_n+\left(n_n+1\right)^2}\)
2 số chính phương liên tiếp cộng với nhau không có thể là 113. T tính ra 112 nên nghĩ you viết nhầm thôi.
Nếu k tin thì tối đi học xem đề thế nào nhé,t khẳng định luôn,đề này là 112
CMR: 1/5+1/13+1/25+1/41+1/61+1/85+1/113<1/2
so sánh A=1/5+1/13+1/25+1/41+1/61+1/85+1/113 với 1/2
Chứng tỏ rằng
1/5/1/13+1/25+1/41+1/61+1/85+1/113<1/2
Gíup mik nha gấp lắm
xem lại đề,1/5/1/13 là sao bạn,có phải là 1/5+1/13 không
Các bạn ơi!!!!giúp mk zới!!!!mk bí quá!!!!làm ơn,mk sẽ tick!!!!!!!!!!!
b1
cho x/7 là phân số tối giản.CM x/y +1 cũng là phân số
b2
so sánh
A=1(1/5+1/13+1/25+1/41+1/61+1/85+1/113) với 1/2