tìm n thuộc Z để 2n^2-n+2chia hết cho 2n+1
xác định n thuộc Z để 6n2+3-2chia hết cho 2n-1
Tìm n thuộc N để
a)n^2chia hết cho n-3
b)2n+1chia hết cho n^2-3
a) Ta có : \(n^2⋮n-3\)
\(\Rightarrow n^2-3^2+3^2⋮n-3\)
\(\Rightarrow\left(n^2-3^2\right)+3^2⋮n-3\)
\(\Rightarrow\left(n-3\right)\left(n+3\right)+3^2⋮n-3\)(sử dụng hằng đẳng thức trừ 2 bình phương của 2 số)
Vì \(\left(n-3\right)\left(n+3\right)⋮n-3\)
\(\Rightarrow3^2⋮n-3\)
\(\Rightarrow9⋮n-3\)
\(\Rightarrow n-3\inƯ\left(9\right)\)
\(\Rightarrow n-3\in\left\{\pm1;\pm3;\pm9\right\}\)
Lập bảng xét các trường hợp :
\(n-3\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(9\) | \(-9\) |
\(n\) | \(4\) | \(2\) | \(6\) | \(0\) | \(12\) | \(-6\) |
Vậy các \(n\inℕ\)thỏa mãn là : 4;2;6;0;12
b, thì mk chưa xem qua nhưng a mk làm đc
Ta có \(n^2⋮n-3\)
\(n^2-3^2+3^2⋮n-3\)
\(\left(n^2-3^2\right)+3^2⋮n-3\)
\(\left(n-3\right)\left(n+3\right)+3^2⋮n-3\)
Vì \(\left(n-3\right)\left(n+3\right)⋮n-3\)
Nên \(\Rightarrow3^2⋮n-3\)
và 32=9
\(\Rightarrow9⋮n-3\)
\(\Rightarrow n-3\inƯ\left(9\right)=\left\{\mp1;\mp3;\mp9\right\}\)
Ta có bảng
n-3 | -1 | 1 | -3 | 3 | -9 | 9 |
n | 2 | 4 | 0 | 6 | -6 | 12 |
bài 1 tìm n thuộc Z
a,3n+2chia hết cho 2n--1
b.n+3 chia hết cho n-7
c,3n+2 chia hết cho n-4
d3n+1 chia ht cho 2n-1
e,3-n chia hết cho 2-3n
f,18n+3chia ht cho 7
g 16n-2chia ht cho 5
a, Để \(n\in Z\)
Ta có : \(3n+2⋮2n-1\)
\(6n-3n+2⋮2n-1\)
\(3\left(2n-1\right)+2⋮2n-1\)
Vì 2 \(⋮\)2n-1 hay 2n-1\(\in\)Ư'(2)={1;-1;-2;2}
Ta có bảng
2n-1 | -1 | 1 | 2 | -2 |
2n | 0 | 2 | 3 | -1 |
n | 0 | 1 | 3/2 | -1/2 |
Vậy n = {0;1}
\(b,\frac{n+3}{n-7}=\frac{n-7+10}{n-7}=1+\frac{10}{n-7}\)
=> 10 chia hết cho n - 7
=> n - 7 thuộc Ư\((10)\)
=> n - 7 \(\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Lập bảng :
n - 7 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | 8 | 6 | 9 | 5 | 12 | 2 | 17 | -3 |
\(c,\frac{3n+2}{n-4}=\frac{3n-12+14}{n-4}=\frac{3(n-4)+14}{n-4}=3+\frac{14}{n-4}\)
=> 14 chia hết cho n - 4
=> n - 4 \(\inƯ(14)\)= \(\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
Lập bảng :
n - 4 | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
n | 5 | 3 | 6 | 2 | 11 | -3 | 18 | -10 |
Tìm n thuộc Z:
a) 3n+2chia hết cho 2n-1
b) n-1 chia hết cho n+5 và n+5 chia het cho n-1
Các bạn nhớ ghi lời giải chi tiết nhé !!!!!
Làm câu b trước, câu a đánh máy mệt lắm
n-1 chia hết cho n+5. n+5 chia hết cho n-1
Suy ra 2 số này là 2 số đối nhau khác 0
2 số đối nhau có tổng =0
(n+5)+(n-1)=0
n+5+n-1=0
2n+4=0
2n=-4
n=-2
(2n^2+ 7n-2)chia hết cho (2n -1)
tìm n thuộc z để ( 2n ^2 +7n -2) chia hết cho (2n -1)
Đặt \(Q=\frac{2n^2+7n-2}{2n-1}\)
Ta có \(\frac{2n^2+7n-2}{2n-1}=\frac{n\left(2n-1\right)+4\left(2n-1\right)+2}{2n-1}=n+4+\frac{2}{2n-1}\)
\(Q\in Z\Leftrightarrow\frac{2n^2+7n-2}{2n-1}\in Z\Leftrightarrow\frac{2}{2n-1}\in Z\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Sau đó tìm n
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
tìm n thuộc Z để 2n^2 - n + 2 chia hết cho 2n +1
Ta có :
\(2n^2-n+2=-n.\left(-2n+1\right)+2\)
Vì -2n + 1 chia hết cho 2n + 1 nên -n.(-2n + 1) cũng chia hết cho 2n + 1
=> 2 chia hết cho 2n + 1
Vì n thuộc Z nên 2n + 1 thuộc {-2;-1;1;2}
=> n thuộc {-1; 0}
tìm n thuộc Z để 2n^2-n-1 chia hết cho 2n+3
Ta có: \(2n^2-n-1=2n^2+3n-4n-6+5=n\left(2n+3\right)-2\left(2n+3\right)+5\)
Vì \(n\left(2n+3\right)\)và \(-2\left(2n+3\right)\)chia hết cho \(2n+3\) nên để \(2n^2-n-1\)chia hết cho \(2n+3\) thì \(5\)phải chia hết cho \(2n+3\), tức là \(2n+3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Với \(2n+3=1\)thì \(n=-1\)
Với \(2n+3=-1\) thì \(n=-2\)
Với \(2n+3=5\)thì \(n=1\)
Với \(2n+3=-5\) thì \(n=-4\)
Vậy, để đa thức \(2n^2-n-1\) chia hết cho đa thức \(2n+3\) thì \(n=\left\{-2;-1;1;-4\right\}\) và \(n\in Z\)
Tìm n thuộc Z, để:
a) 10n + 4 chia hết cho 2n + 7
b) 5n - 4 chia hết cho 3n + 1
c) 2n^2 + n - 6 chia hết cho 2n +1
1/
$10n+4\vdots 2n+7$
$\Rightarrow 5(2n+7)-31\vdots 2n+7$
$\Rightarrow 31\vdots 2n+7$
$\Rightarrow 2n+7\in Ư(31)$
$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$
$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$
2/
$5n-4\vdots 3n+1$
$\Rightarrow 3(5n-4)\vdots 3n+1$
$\Rightarroq 15n-12\vdots 3n+1$
$\Rightarrow 5(3n+1)-17\vdots 3n+1$
$\Rightarrow 17\vdots 3n+1$
$\Rightarrow 3n+1\in Ư(17)$
$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$
$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$
Do $n$ nguyên nên $n\in\left\{0; -6\right\}$
3/
$2n^2+n-6\vdots 2n+1$
$\Rightarrow n(2n+1)-6\vdots 2n+1$
$\Rightarrow 6\vdots 2n+1$
$\Rightarrow 2n+1\in Ư(6)$
Mà $2n+1$ lẻ nên: $2n+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{0; -1; 1; -2\right\}$