Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DU
Xem chi tiết
H24
20 tháng 1 2017 lúc 19:43

\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}\Rightarrow k=2\Rightarrow x=y=z=1\)

A=6

Bình luận (0)
NG
20 tháng 1 2017 lúc 23:35

\(\frac{x-y-z}{x}=1-\frac{y+z}{x}\) tương tự con khác

=> x=y=z

=> A=6

Bình luận (0)
TD
Xem chi tiết
LT
3 tháng 3 2018 lúc 18:42

Dùng tính chất tỉ lệ thức:

x+y+z = 0

\(\frac{x}{\left(y+z+1\right)}=\frac{y}{\left(x+z+1\right)}=\frac{z}{\left(x+y-2\right)}=0\Rightarrow x=y=z=0\) 

Áp dụng tính chất tỉ lệ thức: 

\(x+y+z=\frac{x}{\left(y+z+1\right)}=\frac{y}{\left(x+z+1\right)}=\frac{z}{\left(x+y-2\right)}=\left(\frac{x+y+z}{2x+2y+2z}\right)=\frac{1}{2}\)

=> x+y+z = \(\frac{1}{2}\)

+) \(2x=y+z+1=\frac{1}{2}-x+1\Rightarrow x=\frac{1}{2}\)

+) \(2y=x+z+1=\frac{1}{2}-y+1\Rightarrow y=\frac{1}{2}\) 

+) \(z=\frac{1}{2}-\left(x+y\right)=\frac{1}{2}-1=\frac{-1}{2}\)

Bình luận (0)
IY
3 tháng 3 2018 lúc 18:58

TA CÓ: \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{z+y+1+x+z+1+x+y-2}=\frac{1.\left(x+y+z\right)}{\left(1+1-2\right)+2x+2y+2z}\)

\(=\frac{1.\left(x+y+z\right)}{0+2.\left(x+y+z\right)}=\frac{1.\left(x+y+z\right)}{2.\left(x+y+z\right)}=\frac{1}{2}\)

\(\Rightarrow x+y+z=\frac{1}{2}\)

\(\Rightarrow\frac{x}{z+y+1}=\frac{1}{2}\)\(\Rightarrow2x=z+y+1\)\(\Rightarrow3x=x+z+y+1\)\(\Rightarrow3x=\frac{1}{2}+1\Rightarrow3x=\frac{3}{2}\Rightarrow x=\frac{1}{2}\)

\(\frac{y}{x+z+1}=\frac{1}{2}\)\(\Rightarrow2y=x+z+1\Rightarrow3y=y+x+z+1\Rightarrow3y=\frac{1}{2}+1=\frac{3}{2}\Rightarrow y=\frac{1}{2}\)

\(\frac{z}{x+y-2}=\frac{1}{2}\)\(\Rightarrow2z=x+y-2\Rightarrow3z=x+y+z-2\Rightarrow3z=\frac{1}{2}-2=\frac{-3}{2}\Rightarrow z=\frac{-1}{2}\)

VẬY X= 1/2; Y= 1/2 ; Z= -1/2

CHÚC BN HỌC TỐT!!!!!!

Bình luận (0)
NN
Xem chi tiết
NL
Xem chi tiết
NP
9 tháng 11 2017 lúc 12:14

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{x}{z+y+1}=\frac{y}{z+x+1}=\frac{z}{x+y+1}=x+y+z=\frac{x+y+z}{2\left(x+y+z\right)+3}\)

\(\Rightarrow\left(x+y+z\right)\left(1-\frac{1}{2\left(x+y+z\right)+3}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y+z=0\\2\left(x+y+z\right)+3=1\end{cases}\Rightarrow\orbr{\begin{cases}x+y+z=0\\x+y+z=-1\end{cases}}}\)

Vậy mọi số x,y,z thỏa mãn \(\orbr{\begin{cases}x+y+z=0\\x+y+z=-1\end{cases}}\) đều thỏa mãn bài toán

Bình luận (0)
TE
9 tháng 11 2017 lúc 15:31

cứ sai sai kiểu gì đây

Bình luận (0)
TE
9 tháng 11 2017 lúc 15:33

sao ( x+y+x)(1-1/2(x+y+z)+3)= 0 ha ban.. mk thay cu sai sai... o cho 1-1/2(x+y+z)+3

Bình luận (0)
NT
Xem chi tiết
NA
Xem chi tiết
GH
19 tháng 6 2023 lúc 22:12

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)

Bình luận (2)
H24
Xem chi tiết
TM
Xem chi tiết
TD
10 tháng 2 2019 lúc 16:49

đặt \(\frac{x-y}{z}=a;\frac{y-z}{x}=b;\frac{z-x}{y}=c\)

\(\Rightarrow\)\(\frac{z}{x-y}=\frac{1}{a};\frac{x}{y-z}=\frac{1}{b};\frac{y}{z-x}=\frac{1}{c}\)

Ta có : \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(A=1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+1=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)

Ta có :  \(\frac{b+c}{a}=\left(b+c\right)\frac{1}{a}=\left(\frac{y-z}{x}+\frac{z-x}{y}\right)\frac{z}{x-y}=\frac{y^2-yz+xz-x^2}{xy}.\frac{z}{x-y}=\frac{\left(y-x\right)\left(x+y-z\right)}{xy}.\frac{z}{x-y}=\frac{\left(z-x-y\right)z}{xy}=\frac{2z^2}{xy}\)vì x + y + z = 0 \(\Rightarrow\)z = -x - y

Tương tự : \(\frac{a+c}{b}=\frac{2x^2}{yz}\)\(\frac{a+b}{c}=\frac{2y^2}{xz}\)

\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2z^2}{xy}+\frac{2x^2}{yz}+\frac{2y^2}{xz}=\frac{2\left(x^3+y^3+z^3\right)}{xyz}=\frac{2.3xyz}{xyz}=6\)( vì x + y + z = 0 \(\Rightarrow\)x3 + y3 + z3 = 3xyz )

Vậy A = 3 + 6 = 9

Bình luận (0)
TL
Xem chi tiết
TL
19 tháng 12 2016 lúc 13:12

Đặt: \(\frac{x-y}{z}+\frac{y-z}{x}+\frac{z-x}{y}=M\)

Ta có: 

\(M\cdot\frac{z}{x-y}=1+\frac{z}{x-y}\cdot\left(\frac{y-z}{x}+\frac{z-x}{y}\right)=1+\frac{z}{x-y}\cdot\frac{y^2-yz+xz-x^2}{xy}\)

\(=1+\frac{z}{x-y}\cdot\frac{\left(x-y\right)\left(z-x-y\right)}{xy}=1+\frac{2z^2}{xyz}=1+\frac{2z^3}{xyz}\)            (1)

Tương tự ta cũng có:

\(M\cdot\frac{x}{y-z}=1+\frac{2x^3}{xyz}\)              (2)

\(M\cdot\frac{y}{z-x}=1+\frac{2y^3}{xyz}\)            (3)

Từ (1);(2);(3) suy ra

\(M\cdot\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)=3+\frac{2\left(x^3+y^3+z^3\right)}{xyz}\)

Mà \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

Nên:

\(M\cdot\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)=3+\frac{2\cdot3xyz}{xyz}=9\)

=>đpcm

Bình luận (0)