tìm số nguyên dương n để các biểu thức sau là số chính phương n^2-n+2
Tìm số nguyên dương n để biểu thức sau là số chính phương
c) n3-n+2
ta có n^3-n=n(n^2-1)=(n-1)n(n+1) chia hết cho 3
=> n^3-n+2 chia 3 dư 2
mà số chính phương chia 3 dư 0 hoặc 1 suy ra vô nghiệm
Ta có; \(n^3-n=n^2.n-n=\left(n^2-1hay1^2\right).n=\left(n-1\right)\left(n+1\right)n\)
Vì n-1 ; n ; n+1 là ba số liên tiếp nên trong ba số chắc chắn có một thừa số chia hết cho 3.
Vậy \(\left(n^3-n\right)⋮3\)suy ra n\(^3\)-n + 2 chia cho 3 dư 2.
SCP không chia cho 3 dư 2 nên không có n sao cho số trên là SCP!
Tìm các số nguyên dương n để các biểu thức sau là số chính phương
a) \(n^2-n+2\)
b) \(n^5-n+2\)
Tìm số nguyên dương n để các biểu thức sau là số chính phương:
a/ \(n^2-n+2\)
b/ \(n^5-n+2\)
Tìm số nguyên dương n để biểu thức n^5 -n+2 là sô chính phương
Giúp mình với mình đang cần gấp !
Lời giải:
$n^5-n=n(n^4-1)=n(n^2-1)(n^2+1)=n(n-1)(n+1)(n^2+1)$
Vì $n,n-1,n+1$ là 3 số nguyên liên tiếp nên tích của chúng chia hết cho $3$
$\Rightarrow n^5-n=n(n-1)(n+1)(n^2+1)\vdots 3$
$\Rightarrow n^5-n+2$ chia $3$ dư $2$. Do đó nó không thể là scp vì scp chia $3$ chỉ có dư $0$ hoặc $1$.
Tìm n nguyên dương để biểu thức là số chính phương:
\(n^4-n+2\)
Tìm số nguyên dương n để biểu thức n2 - n + 2 lá số chính phương
Tìm số nguyên dương n để biểu thức n2 - n + 2 lá số chính phương
Tìm số nguyên dương n để biểu thức sau là số chính phương
a) \(n^2-n+2\)
b)\(n^4-n+2\)
GIÚP MIK VỚI
`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........