Cho tam giác ABC vuông tại A ngoại tiếp(I,r)và nội tiếp (O,R),chứng minh
a,2r=AB+AC-BC
b,AB+AC=2(R+r)
Cho tam giác ABC vuông tại A ngoại tiếp ( I,r) và nội tiếp (O;R). CMR
a) 2r=AB+AC-BC
b) AB+AC=2(r+R)
Cho tam giác ABC vuông tại A, vẽ đường tròn nội tiếp và đường tròn ngoại tiếp tam giác ABC lần lượt có bán kính r,R. Chứng minh AB+AC=2(r+R)
Cho tam giác ABC vuông tại A. Vẽ (O1;r) nội tiếp tam giác ABC và (O2;R) ngoại tiếp tam giác ABC chứng minh:
a) R+r = (AB+AC)/2
b) R = (AB + AC - BC)/2
cám ơn nhìu, mai mình đi học rùi, huhu
Cho tam giác ABC vuông tại A. Gọi R là bán kính của đường tròn ngoại tiếp. r là bán kính của đường tròn nội tiếp tam giác ABC. Chứng minh rằng: AB + AC = 2(R + r)
Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.
Ta có: BC = 2R
Giả sử đường tròn (O) tiếp với AB tại D, AC tại E và BC tại F
Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.
Suy ra: AD = AE = EO = OD = r
Theo tính chất hai tiếp tuyến cắt nhau ta có:
AD = AE
BD = BF
CE = CF
Ta có: 2R + 2r = BF + FC + AD + AE
= (BD + AD) + (AE + CE)
= AB + AC
Vậy AB = AC = 2(R + r)
Cho tam giác ABC vuông ở A R,r : Bán kính của đường kính ngoại tiếp ,nội tiếp tam giác ABC CMR: câu a r=1/2(AB+AC-BC) câu b AB+AC=2(R+r)
Cho tam giác ABC vuông tại A. Vẽ đường tròn ngoại tiếp bán kính R và nội tiếp bán kính r của tam giác đó. Biết R = 5cm; r = 2cm. Tính AB + AC.
Tam giác ABC vuông tại A => R=\(\frac{BC}{2}\) => BC=10
Ta có: r =\(\frac{2S}{AB+BC+AC}\) => \(\frac{AB.AC}{AB+AC+10}\) =2
AB2+AC2=100 (Pytago)
Giải pt ra, ta được: (AB;AC)=(6;8)
=> AB+AC=14
Cho tam giác ABC vuông tại A .Gọi R,r theo thứ tự là bán kính đường tròn ngoại tiếp và nội tiếp tam giác.Biết R=5cm,r=2cm.Tính AB+AC
Cho tam giác ABC vuông tại A. r, R lần lượt là bán kính đường tròn nội, ngoại tiếp tam giác. Cmr: AB+AC=2(r+R)
Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.
Ta có: BC = 2R
Giả sử đường tròn (O) tiếp với AB tại D, AC tại E và BC tại F
Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.
Suy ra: AD = AE = EO = OD = r
Theo tính chất hai tiếp tuyến cắt nhau ta có:
AD = AE
BD = BF
CE = CF
Ta có: 2R + 2r = BF + FC + AD + AE
= ( BD + AD ) + ( AE + CE )
= AB + AC
Vậy AB = AC = 2 ( R + r )
Nguồn : sachbaitap
Cho tam giác ABC vuông tại A. Gọi r và R lần lượt là bán kính đường tròn nội tiếp và ngoại tiếp của tam giác ABC. Biết r = 3cm, R = 5cm.
Tổng độ dài 2 cạnh AB và AC là .......cm.