Cho \(\text{Â}=\frac{10n-3}{4n-5}\)
a, Tìm n nguyên để A nguyên
b, Tìm giá trị lớn nhất của A
Cho \(\text{A}=\frac{10n-3}{4n-5}\)
a,Tìm n nguyên để A nguyên
b, Tìm GTLN của A ( n thuộc N )
cho phân số A = \(\frac{10n}{5n-3}\)(n thuộc Z)
a) Tìm n để A có giá trị nguyên
b) tìm n để A có giá trị lớn nhất? tìm giá trị ớn nhất đó?
a) \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)
Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\Rightarrow\frac{6}{5n-3}\in Z\Rightarrow5n-3\in U\left(6\right)\)
Ta có bảng sau:
5n - 3 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -0,6 | 0 | 0,2 | 0,4 | 0,8 | 1 | 1,2 | 1,8 |
Mà n thuộc Z => n = { 0 ; 1 }
b) Để A lớn nhất thì \(2+\frac{6}{5n-3}\)có giá trị lớn nhất => \(\frac{6}{5n-3}\)lớn nhất
=> 5n - 3 nguyên dương nhỏ nhất ; 5n - 3 thuộc ước của 6 và n thuộc Z
=> 5n - 3 = 2 => x = 1 và \(\frac{6}{5n-3}=\frac{6}{2}=3\)
Thay \(3=\frac{6}{5n-3}\)vào \(A=2+\frac{6}{5n-3}\)ta có:
\(A=2+3=5\)
Vậy giá trị lớn nhất của A là 5 khi x = 1
a, Ta có : \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}\)
\(=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)
\(=2+\frac{6}{5n-3}\)
Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\)
\(\Rightarrow\frac{6}{5n-3}\in Z\)
\(\Rightarrow6\)chia hết cho\(5n-3\)
\(\Rightarrow5n-3\inƯ\left(6\right)\)
Ta có bảng sau :
5n-3 | 1 | -1 | 2 | -2 | 3 | -3 |
5n | 4 | 2 | 5 | 1 | 6 | 0 |
n | 0,8 | 0,4 | 1 | 0,2 | 1,2 | 0 |
Vì \(n\in Z\)=> \(n\in\left\{0;1\right\}\)
b, Để A có giá trị lớn nhất thì \(2+\frac{6}{5n-3}\)có giá trị lớn nhất
=>\(\frac{6}{5n-3}\)có giá trị lớn nhất
=> 5n-3 là số nguyên dương bé nhất
=> 5n-3 \(\inƯ\left(6\right)\)
=> n \(\in Z\)
=> 5n - 3 = 2
=> 5n = 5
=> n = 1
Thay n = 1 vào \(\frac{6}{5n-3}\)Ta có :
\(\frac{6}{5\times1-3}=3\)
Thay 3 vào A = \(2+\frac{6}{5n-3}\)ta được
A = 2 + 3 =5
Vậy giá trị lớn nhất của A là 5 tại n = 1
Cho \(B=\frac{10n}{5n-3}\)
a, Tìm n để B có giá trị nguyên
b, Tìm giá trị lớn nhất của B
a, Để B có giá trị nguyên thì 10n chia hết cho 5n - 3
suy ra 10n - 6 + 6 chia hết cho 5n - 3
suy ra 2 . (5n - 3) + 6 chia hết cho 5n - 3
Vì 2 . (5n - 3) chia hết cho 5n - 3 nên 6 chia hết cho 5n - 3
Suy ra 5n - 3 thuộc { 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 6 ; -6 }
suy ra 5n thuộc { 4 ; 2 ; 5 ; 1 ; 6 ; 0 ; 9 ; -3 }
Mà 5n chia hết cho 5 nên 5n thuộc { 5 ; 0 }
suy ra n thuộc { 1 ; 0 }
Vậy với n thuộc { 1 ; 0 } thì B có giá trị nguyên
b, B = 10n / 5n - 3
B = 10n - 6 + 6 / 5n - 3
B = 2 . ( 5n - 3 ) + 6 / 5n - 3
B= 2 . ( 5n - 3 ) / 5n - 3 + 6 / 5n - 3
B = 2 + 6 / 5n - 3
Để B có giá trị lớn nhất thì 6 / 5n - 3 có giá trị lớn nhất
suy ra 5n - 3 có giá trị nhỏ nhất
+ TH1: 5n - 3 < 0, khi đó 6 / 5n - 3 là số nguyên âm, không đạt giá trị lớn nhất
+ TH2: 5n - 3 > 0 suy ra 5n - 3 = 2
suy ra 5n = 2 + 3 = 5
suy ra n = 5 : 5 =1
Giá trị lớn nhất của B là 10 . 1 / 5 . 1 - 3 = 10 / 5 - 3 = 10 / 2 = 5
Cho phân số \(\frac{10n}{5n-3}\)
a/ Tìm n để B có giá trị nguyên
b/ Tìm giá trị lớn nhất của B
10n/5n-3=2+6/5n-3
=> để B nguyên thì (5n-3) thuộc ước của 6 rồi giải tiếp
Mk chỉ giúp được câu a thôi
Để B có giá trị nguyên
=>10n chia hết 5n-3
=>2(5n-3)+6 chia hết 5n-3
=>6 chia hết 5n=3
=>5n-3 thuộc Ư(6)=/-1;1;-2;2;-3;3;-6;6/
5n-3 | -1 | 1 | -2 | 2 | -3 | 3 | -6 | 6 |
n | 0,2 | 0,8 | 0,2 | 1 | 0 | 1,2 | -0,6 | 1,8 |
vậy n=(0;1)
Chivi devi sai rồi bạn đều đầu có cho n thuộc z
Cho B = \(\frac{10n}{5n-3}\)
a) Tìm n thuộc Z để B có giá trị nguyên
b) Tìm giá trị lớn nhất của B
khi ko mún tích thì tích 1 tích
khi mún tích thì tích 50 tích
Cho phân số B = 10n : 5n -3, a) Tìm n E Z để B có gía trị là số nguyên. b) Tìm giá trị lớn nhất của B
Cho A = 4n+1 / 2n+3 (n là số nguyên).
a) Tìm n để A nguyên
b) Tìm n để A có giá trị lớn nhất, nhỏ nhất
\(\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)
Để \(2-\frac{5}{2n+3}\) là số nguyên <=> \(\frac{5}{2n+3}\) là số nguyên
=> 2n + 3 thuộc Ư(5) = { - 5; - 1; 1; 5 }
=> 2n + 3 = { - 5; - 1; 1; 5 }
=> n = { - 4; - 2; - 1 ; 1 }
a) Ta có:
\(\frac{4n+1}{2n+3}\inℤ\)
\(\Rightarrow\frac{4n-2+3}{2n+3}\inℤ\)
\(\Rightarrow\frac{2n+2n+3-2}{2n+3}\inℤ\)
\(\Rightarrow\frac{2n+3}{2n+3}+\frac{2n-2}{2n+3}\inℤ\)
\(\Rightarrow1+\frac{2n-2}{2n+3}\inℤ\Leftrightarrow\frac{2n-2}{2n+3}\inℤ\)
\(\Rightarrow\frac{2n+3-5}{2n+3}\inℤ\)
\(\Rightarrow1+\frac{-5}{2n+3}\inℤ\Leftrightarrow\frac{-5}{2n+3}\inℤ\)
\(\Rightarrow\left(2n+3\right)\in B\left(-5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow\left(2n+3\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow2n=\left\{-2;-4;2;-8\right\}\)
\(\Rightarrow n=\left\{-1;-2;1;-4\right\}\)
Cho biểu thức \(P=\frac{4n+1}{2n+3}\)
a, Tìm số nguyên n để P nhận giá trị là số nguyên
b, Tìm số nguyên n để P có giá trị lớn nhất
Bài 1 : Tìm số nguyên n để cho \(\frac{2n-1}{3n+2}\) rút gọn được
Bài 2 : Cho A = \(\frac{10n}{5n-3}\) ( n \(\in\) Z )
a) Tìm n để A có giá trị nguyên
b) Tìm giá trị lớn nhất của A
Bài 2: chia 10n cho 5n-3 như bình thường ta được dư là 6
Để A có giá trị nguyên thì \(10n⋮5n-3\) Do đó 6 phai chia hết cho 3n+2
<= >5n-3\(\in u\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\\\)
Lập bảng
5n-3= | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n= | -0.6 | 0 | 0.2 | 0.4 | 0.8 | 1 | 1.2 | 1.8 |