Cho a và b là hai số thực phân biệt thỏa mãn \(a^4-4a=b^4-4b\). Chứng minh rằng 0<a+b<2
Xét a,b là các số thực thỏa mãn:
1. a3 + a = 3 và b3 + b = 3. Chứng minh rằng a=b.
2. a3+ 3a2+ 4a - 2 =0 và b3- 3b2 + 4b - 7 =0. Tính a + b ?
10:591. b3+b= 3
(b3+b)=3
b.(3+1)=3
b. 4= 3
b=\(\dfrac{3}{4}\)
a3+a= 3 b3
(a3+a)=3
a.(3+1)=3
a. 4= 3
a=\(\dfrac{3}{4}\)
2
Cho a, b là 2 số thực phân biệt thỏa mãn a2+4a=b2+4b=1. CMR
a, a+b=-4
b,a3+b3=-76
c, a4+b4=322
Cho các số thực dương a,b thỏa mãn a+b = 4ab. Chứng minh rằng:
\(\dfrac{a}{4b^2+1}\)+\(\dfrac{b}{4a^2+1}\)≥\(\dfrac{1}{2}\)
Ta có \(-\dfrac{4ab^2}{4b^2+1}\ge-\dfrac{4ab^2}{2\sqrt{4b^2}}=\dfrac{4ab^2}{4b}=ab\)
\(-\dfrac{4a^2b}{4a^2+1}\ge-\dfrac{4a^2b}{2\sqrt{4a^2}}=\dfrac{4a^2b}{4a}=ab\)
Mà \(\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}=\dfrac{a\left(4b^2+1\right)}{4b^2+1}-\dfrac{4ab^2}{4b^2+1}+\dfrac{b\left(4a^2+1\right)}{4a^2+1}-\dfrac{4ab^2}{4a^2+1}\ge a-ab+b-ab=4ab-2ab=2ab\)
Mà \(a+b=4ab\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=4\ge\dfrac{2}{2\sqrt{ab}}\Rightarrow4\sqrt{ab}\ge2\Rightarrow ab\ge\dfrac{1}{4}\)
\(\Rightarrow2ab\ge\dfrac{1}{2}\Rightarrow\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}\ge\dfrac{1}{2}\)
Dấu "=" \(\Leftrightarrow a=b=\dfrac{1}{2}\)
Lời giải:
ĐK $\Rightarrow \frac{1}{a}+\frac{1}{b}=4$
Đặt $\frac{1}{x}=a; \frac{1}{y}=b$ thì bài toán trở thành:
Cho $a,b>0$ thỏa mãn $a+b=4$. CMR:
$P=\frac{x^2}{y(x^2+4)}+\frac{y^2}{x(y^2+4)}\geq \frac{1}{2}$
-----------------------
Áp dụng BĐT AM-GM:
$\frac{x^2}{y(x^2+4)}+\frac{y(x^2+4)}{64}\geq \frac{x}{4}$
$\frac{y^2}{x(y^2+4)}+\frac{x(y^2+4)}{64}\geq \frac{y}{4}$
Cộng theo vế và rút gọn:
$P\geq \frac{3(x+y)-xy}{16}=\frac{12-xy}{16}$
Mà $xy\leq \frac{(x+y)^2}{4}=4$
$\Rightarrow P\geq \frac{12-4}{16}=\frac{1}{2}$
Ta có đpcm.
Cho a và b là các số thỏa mãn: a>b>0 và a^3-a^2b+ab^2-6b^3=0
Tính giá trị biểu thức A=(a^4-4b^4)/(b^4-4a^4)
\(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)
Vì a>b>0 =>a2+ab+3b2>0 nên từ (1) ta có a=2b
Vậy biểu thức \(A=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)
Cho các số nguyên dương a,b thỏa mãn a >= b và a^2 +4b+3 là số chính phương. Chứng minh rằng b^2 +4a+12 là số chính phương. Giúp mình với mình đang cần gấp plss!! 😭😭😭
Ta đặt \(a^2+4b+3=k^2\)
\(\Leftrightarrow k^2-a^2\equiv3\left[4\right]\)
Mà \(k^2,a^2\equiv0,1\left[4\right]\) nên \(k^2⋮4,a^2\equiv1\left[4\right]\) \(\Rightarrow k⋮2,a\equiv1\left[2\right]\)
Đặt \(k=2l,a=2c+1>b\), ta có \(\left(2c+1\right)^2+4b+3=4l^2\)
\(\Leftrightarrow4c^2+4c+4b+4=4l^2\)
\(\Leftrightarrow c^2+c+1+b=l^2\)
Nếu \(b< c\) thì \(c^2< c^2+c+1+b< c^2+2c+1=\left(c+1\right)^2\), vô lí.
Nếu \(c< b< 2c+1\) thì
\(\left(c+1\right)^2< c^2+c+1+b< c^2+4c+4=\left(c+2\right)^2\), cũng vô lí.
Do vậy, \(c=b\) hay \(a=2b+1\)
Từ đó \(b^2+4a+12=b^2+4\left(2b+1\right)+12\) \(=b^2+8b+16\) \(=\left(b+4\right)^2\) là SCP. Suy ra đpcm.
Bài 1. Tìm các số thực x thỏa mãn:
a. |3 − |2x − 1|| = x − 1
b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
c. |x − 2| + |x − 3| + ... + |x − 9| = 1 − x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số
chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|
có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn.
Cho các số thực a,b,c thỏa mãn 4a+b>8+2b và a+b+c<-1. Khi đó số nghiệm thực phân biệt của phương trình x 3 + a x 2 + b x + c = 0 bằng
A.0
B.3
C.2
D.1
Cho các số thực a,b,c thỏa mãn a+c>b+1 và 4a+2b+c<-8. Khi đó số nghiệm thực phân biệt của phương trình x 3 + a x 2 + b x + c = 0 bằng
A.0
B.3
C.2
D.1