Những câu hỏi liên quan
PT
Xem chi tiết
NT
27 tháng 10 2015 lúc 19:33

Gọi 5 số tự nhiên liên tiếp là :a,a+1,a+2,a+3,a+4 ( với a thuộc số tự nhiên )

Một số khi chia hết cho 5 thì có dạng tổng quát là :5k,5k+1,5k+2,5k+3,5k+4 ( với k thuộc số tự nhiên )

 Nếu a = 5k thì suy ra a chia hết cho 5 

 Nếu a = 5k+1 thì suy ra a+4 = 5k+1+4 = 5k+5 chia hết cho 5

 Nếu a = 5k+2 thì suy ra a+3 = 5k+2+3 = 5k+5 chia hết cho 5 

 Nếu a = 5k+3 thì suy ra a+2 = 5k+2+3 = 5k+5 chia hết cho 5

Nếu a = 5k+4 thì suy ra a+1 = 5k+4+1 = 5k+5 chia hết cho 5 

=>trong 5 số tự nhiên liên tiếp có 1 số chia hết cho 5 ( đpcm).

Bình luận (0)
KK
27 tháng 10 2015 lúc 19:38

Nguyễn Văn Tân thik lik e đến thế cơ ak

Bình luận (0)
NT
27 tháng 10 2015 lúc 19:31

 ta có 5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => điều phải chứng minh 
nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => điều phải chứng minh 
nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => điều phải chứng minh 
nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => điều phải chứng minh 
nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => điều phải chứng minh 

tích cho em nhé OLM 

Bình luận (0)
LA
Xem chi tiết
MP
13 tháng 11 2016 lúc 9:38

Vì số chia hết cho 5 là số có tận cùng là 0 hoặc 5

mà chỉ có 1;2;3;4;5;6;7;8;9 là số tận cùng

=> Trong 5 stn liên tiếp luôn có só chia hết cho 5

Bình luận (0)
H24
Xem chi tiết
GD

Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2

TH1: Nếu a chia hết cho 3 => Đề bài đúng

TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)

=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng

TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)

=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng

TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)

Bình luận (0)
GD

Bài 5:

Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3

Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2

Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4

Nhưng: 2 không chia hết cho 4

Nên: 4(b+1)+2 không chia hết cho 4

Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4 

Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)

Bình luận (0)
NH
2 tháng 12 2023 lúc 8:37

Bài 3: 

\(\overline{7a4b}\) ⋮ 4 ⇒ \(\overline{4b}\)⋮ 4 ⇒ b = 0; 4; 8

Nếu b = 0 ta có: \(\overline{7a40}\)⋮ 7 

⇒ 7040 + a \(\times\) 100 ⋮ 7

1005\(\times\) 7+ 5 + 14a + 2a ⋮ 7 

        5 + 2a ⋮ 7 ⇒ 2a = 2; 9; 16⇒ a = 1; \(\dfrac{9}{3}\);8 (1)

Nếu b = 8 ta có: \(\overline{7a4b}\) = \(\overline{7a48}\)⋮ 7 

⇒ 7048 + a\(\times\) 100 ⋮ 7

1006\(\times\) 7 + 6 + 14a + 2a ⋮ 7

       6 + 2a ⋮ 7 ⇒ 2a = 1; 8; 15 ⇒ a = \(\dfrac{1}{2}\); 4; \(\dfrac{15}{2}\) (2)

Nếu b = 4 ta có: \(\overline{7a4b}\)  =  \(\overline{7a44}\) ⋮ 7

⇒ 7044 + 100a ⋮ 7

1006.7 + 2 + 14a + 2a ⋮ 7 

       2 + 2a ⋮ 7 ⇒ 2a = 5; 12;19 ⇒ a = \(\dfrac{5}{2}\); 6; \(\dfrac{9}{2}\) (3)

Kết hợp (1); (2); (3) ta có:

(a;b) = (1;0); (8;0); (4;8); (6;4)

Bình luận (0)
TP
Xem chi tiết
H24
10 tháng 8 2015 lúc 17:03

Ta có 5 số tn liên tiếp là n;n+ 1; n + 2; n + 3; n + 4  nếu n chia hết cho 5 => điều phải chứng minh.
Nếu n chia cho 5 dư 1 => n + 4 chia hết cho 5 => điều phải chứng minh.
Nếu n chia cho 5 dư 2 => n + 3 chia hết cho 5 => điều phải chứng minh.
Nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => điều phải chứng minh.
Nếu n chia cho 5 dư 4 => n + 1 chia hết cho 5 => điều phải chứng minh.

Bình luận (0)
HT
11 tháng 10 2015 lúc 9:24

Gọi 5 số tự nhiên liên tiếp là :a,a+1,a+2,a+3,a+4 ( với a thuộc số tự nhiên )

Một số khi chia hết cho 5 thì có dạng tổng quát là :5k,5k+1,5k+2,5k+3,5k+4 ( với k thuộc số tự nhiên )

+ Nếu a = 5k thì suy ra a chia hết cho 5 

+ Nếu a = 5k+1 thì suy ra a+4 = 5k+1+4 = 5k+5 chia hết cho 5

+ Nếu a = 5k+2 thì suy ra a+3 = 5k+2+3 = 5k+5 chia hết cho 5 

+ Nếu a = 5k+3 thì suy ra a+2 = 5k+2+3 = 5k+5 chia hết cho 5

+ Nếu a = 5k+4 thì suy ra a+1 = 5k+4+1 = 5k+5 chia hết cho 5 

Vậy : trong 5 số tự nhiên liên tiếp có 1 số chia hết cho 5 ( điều phải chứng minh ).

Bình luận (0)
H24
15 tháng 10 2017 lúc 21:26

                     Giải

Ta có :

5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => điều phải chứng minh ​Nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => điều phải chứng minh Nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => điều phải chứng minh Nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => điều phải chứng minh Nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => điều phải chứng minh 

Chúc bn học giỏi nhé !!!

Bình luận (0)
NV
Xem chi tiết
OO
17 tháng 10 2015 lúc 16:22

Gọi 5 số tự nhiên liên tiếp là :a,a+1,a+2,a+3,a+4 ( với a thuộc số tự nhiên )
Một số khi chia hết cho 5 thì có dạng tổng quát là :5k,5k+1,5k+2,5k+3,5k+4 ( với k thuộc số tự nhiên )
+ Nếu a = 5k thì suy ra a chia hết cho 5 
+ Nếu a = 5k+1 thì suy ra a+4 = 5k+1+4 = 5k+5 chia hết cho 5
+ Nếu a = 5k+2 thì suy ra a+3 = 5k+2+3 = 5k+5 chia hết cho 5 
+ Nếu a = 5k+3 thì suy ra a+2 = 5k+2+3 = 5k+5 chia hết cho 5
+ Nếu a = 5k+4 thì suy ra a+1 = 5k+4+1 = 5k+5 chia hết cho 5 
Vậy : trong 5 số tự nhiên liên tiếp có 1 số chia hết cho 5 ( điều phải chứng minh ).

 

Bình luận (0)
LT
Xem chi tiết
H24
Xem chi tiết
TA
8 tháng 1 2021 lúc 14:53

a) Chứng minh ba số tự nhiên liên tiếp chia hết cho 3

Gọi ba số tự nhiên liên tiếp đó là: \(n;\)\(n+1;\)\(n+2\)

Suy ra tích ba số đó là: \(n.\left(n+1\right).\left(n+2\right)\)

+ Với \(n:3\)dư \(1\)\(\Rightarrow\)\(n=3k+1\)\(\left(k>0\right)\)

Thay \(n=3k+1\)vào \(n+2\)ta có: \(n+2=3k+1+2=3k+3⋮3\)

+ Với \(n:3\)dư \(2\)\(\Rightarrow\)\(n=3k+2\)\(\left(k>0\right)\)

Thay \(n=3k+1\)vào \(n+1\)ta có: \(n+1=3k+1+2=3k+3⋮3\)

Vậy ba số tự nhiên liên tiếp luôn chia hết cho 3

b) Chứng minh bốn số tự nhiên liên tiếp chia hết cho 4

Gọi ba số tự nhiên liên tiếp đó là: \(n;\)\(n+1;\)\(n+2;\)\(n+3\)

Suy ra tích ba số đó là: \(n.\left(n+1\right).\left(n+2\right).\left(n+4\right)\)

+ Với \(n:4\)dư \(1\)\(\Rightarrow\)\(n=4k+1\)\(\left(k>0\right)\)

Thay \(n=4k+1\)vào \(n+3\)ta có: \(n+3=4k+1+3=4k+4⋮4\)

+ Với \(n:4\)dư \(2\)\(\Rightarrow\)\(n=4k+2\)\(\left(k>0\right)\)

Thay \(n=4k+2\)vào \(n+2\)ta có: \(n+2=4k+2+2=4k+4⋮4\)

+ Với \(n:4\)dư \(3\)\(\Rightarrow\)\(n=4k+3\)\(\left(k>0\right)\)

Thay \(n=4k+3\)vào \(n+1\)ta có: \(n+1=4k+1+3=4k+4⋮4\)

Vậy bốn số tự nhiên liên tiếp luôn chia hết cho 4

Bình luận (0)
 Khách vãng lai đã xóa
LV
20 tháng 10 2021 lúc 22:42

\(a)\) Gọi ba số tự nhiên liên tiếp là \(a,a+1,a+2\)

Nếu \(a⋮3\) thì bài toán được chứng minh

Nếu \(a⋮3̸\) thì \(a=3k+1\) hoặc \(a=3k+2\left(k\in N\right)\)

Nếu \(a=3k+1\) thì \(a+2=3k+1+2=3k+3⋮3\)

(vì \(3k⋮3\)\(3⋮3\) nên\(3k+3⋮3\))

Nếu \(a=3k+2\) thì \(a+1=3k+2+1=3k+3⋮3\)

(vì \(3k⋮3\)\(3⋮3\) nên \(3k+3⋮3\))

Vậy trong ba số tự nhiên liên tiếp, có \(1\) số chia hết cho \(3\)

Bình luận (0)
 Khách vãng lai đã xóa
LV
20 tháng 10 2021 lúc 22:47

\(b)\)Đặt \(4\) số tự nhiên liên tiếp là: \(n,n+1,n+2,n+3\)

Nếu \(n⋮4\) thì bài toán đc chứng minh

Nếu \(n⋮4\)\(1\) \(\Rightarrow\) \(4k+1\) \(\Rightarrow\) \(n=3=4k+1+3=4k+4⋮4\)

Nếu \(n⋮4\)\(2\) \(\Rightarrow\) \(4k+2\)\(\Rightarrow\)  \(n=2=4k+2+2=4k+4⋮4\)

Nếu \(n⋮4\)\(3\) \(\Rightarrow\) \(4k+3\)\(\Rightarrow\)  \(n=1=4k+3+1=4k+4⋮4\)

Vậy trong 4 số tự nhiên liên tiếp có \(1\) số chia hết cho \(4\)

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
H24
9 tháng 3 2020 lúc 15:50

xnxx.com

Bình luận (0)
 Khách vãng lai đã xóa
BM
9 tháng 3 2020 lúc 15:51

amlvxql

Bình luận (0)
 Khách vãng lai đã xóa
HS
9 tháng 3 2020 lúc 16:04

a) Gọi ba số tự nhiên liên tiếp là a, a+1,a + 2\(\left(a\inℕ\right)\)

Nếu a = 3k thì \(a⋮3\)

Nếu a = 3k + 1 thì a + 2 = 3k + 3 = 3(k + 1)

=> \(3\left(k+1\right)⋮3\)

=> \(\left(a+2\right)⋮3\)

Nếu a = 3k + 2 thì a + 1 = 3k + 3 = 3(k+1)

=> \(3\left(k+1\right)⋮3\)

=> \(\left(a+1\right)⋮3\)

Vậy trong ba số tự nhiên liên tiếp,có một số chia hết cho 3

b) Gọi bốn số tự nhiên liên tiếp là a,a + 1,a + 2,a + 3 \(\left(a\inℕ\right)\)

Nếu a = 4k thì a chia hết cho 4

Nếu a = 4k + 1 thì a + 3 = 4k + 4 chia hết cho 4

Nếu a = 4k + 2 thì a + 2 = 4k + 4 chia hết cho 4

Nếu a = 4k + 3 thì a + 1 = 4k + 4 chia hết cho 4

Vậy : ...

Bình luận (0)
 Khách vãng lai đã xóa
BH
Xem chi tiết