Cho x+y=a,x.y=b.Tính \(x^3+y^3\)theo a,b
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x+y=a,x^2+y^2=b.Tính x^3+y^3 theo a và b
x^3+y^3=(x+y)^3-3xy(x+y)=a^3-3*\(\frac{\left(x+y\right)^2-x^2-y^2}{^{^{ }}2}\)*a=a^3-3*\(\frac{a^2-b}{2}\)*a
Câu 1: Tìm các số nguyên x,y sao cho :
a/ x.y = -5
b/ x.y= -5 và x > y
c/ (x+1)(y-2)= -5
Câu 2: Tìm các số nguyên x,y sao cho :
a/ x.y = -3
b/ x.y= -3 và x < y
c/ (x-1)(y+1)= -3
Câu 3: Tìm các số nguyên x,y sao cho :
a/ x.y= -7
b/x.y=-7 và x<y
c/ (x-5).(y+4) = -7
Mình cần gấp!!!
Ai giải sớm mk tick cho ạh :333
Cảm ơn...
câu 1 a) xy=-5 => (x,y)=(1,-5),(-1,5)
b) xy=-5 với x>y=>x=1,y=-5
c)(x+1)(y-2)=-5 => * x+1=1 và y-2=-5 => x=-1, y=-3
* x+1=-5 và y-2=1=> x=-6 , y=3
câu 2 , câu 3 tương tự
cho x+y=-3 và x.y=-28.tính giá trị các biểu thức theo m,n
a, x^2+y^2
b,x^3+y^3
c,x^4+y^4
\(a,x^2+y^2=\left(x+y\right)^2-2xy=\left(-3\right)^2-2.\left(-28\right)=65\)
\(b,x^3+y^3=\left(x+y\right)^3-3x^2y-3xy^2\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=\left(-3\right)^3-3.\left(-28\right).\left(-3\right)=-279\)
\(c,x^4+y^4=\left(x+y\right)^4-4x^3y-4xy^3-6x^2y^2\)
\(=\left(x+y\right)^4-4xy\left(x^2+y^2\right)-6\left(xy\right)^2\)
\(=\left(-3\right)^4-4.\left(-28\right).65-6.\left(-28\right)^2=2657\)
Cho x+y=a và x.y=b .Tính giá trị biểu thức sau theo a và b :
a) x2 + y2
b) x3 +y3
c) x4 + y4
d) x5 + y5
a) cho x+y=a ; x.y =b . Tính
A=x^2+y^2 ; B=x^3+y^3 ; C=x^5+y^5
b) cho x+y=1 . Tính M= 2.(x^3+y^3 ) - 3. ( x^2+y^2 )
a)
A=\(x^2+y^2=\left(x^2+2xy+y^2\right)-2xy=\left(x+y\right)^2-2xy=a^2-2b\)
\(B=x^3+y^3=\left(x^3+3x^2y+3xy^2+y^3\right)-3x^2y-3xy^2=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)
\(C=x^5+y^5=\left(x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)
\(=\left(x+y\right)^5-5xy\left(x^3+2xy^2+2x^2y+y^3\right)=\left(x+y\right)^5-5xy\left(x^3+3xy^2+3x^2y+y^3-xy^2-x^2y\right)\)
\(=\left(x+y\right)^5-5xy\left(\left(x+y\right)^3-xy\left(x+y\right)\right)=a^5-5b\left(a^3-ab\right)\)
Tìm x, y biết
a. x.y+3.x - 7.y =21
b. x.y+3.x - 2.y =11
c. x.y - 2.y + 3.x =14
d. 4.y - 3.x + x.y =16
b) \(xy+3x-2y=11\)
\(xy+3x-2y-6=11-6\)
\(xy+3x-2y-6=5\)
\(\left(xy+3x\right)-\left(2y+6\right)=5\)
\(x\left(y+3\right)-2\left(y+3\right)=5\)
\(\left(x-2\right)\left(y+3\right)=5\)
\(\Rightarrow5=\left(-1\right)\left(-5\right)=1\cdot5\)
Bạn tự lập bảng mà thử nghiệm nhé
a) \(xy+3x-7y=21\)
\(xy+3x-7y-21=21-21\)
\(xy+3x-7y-21=0\)
\(\left(xy+3x\right)-\left(7y+21\right)=0\)
\(x\left(y+3\right)-7\left(y+3\right)=0\)
\(\left(x-7\right)\left(y+3\right)=0\)
\(\orbr{\begin{cases}x-7=0\\y+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\y=-3\end{cases}}\)
cho x+y=3 và x.y=-10 tính A= x^2+y^2 B= x^3+y^3
Ta có : \(A=x^2+y^2=x^2+2xy+y^2-2xy\)
\(A=\left(x+y\right)^2-2xy\)
Với \(x+y=3\) và \(xy=-10\)
\(\Rightarrow A=3^2-2.\left(-10\right)\)
\(A=9+20\)
\(A=29\)
Tương tự : \(B=x^3+y^3=\left(x+y\right)^3-3xy.\left(x+y\right)\)
\(B=\left(3\right)^3-3.\left(-10\right).3\)
\(B=117\)
a) cho x+y=1 và x.y= - 1 . tính x3 + y3
b) cho x - y = 1 và x.y = 6 . tính x3 - y3
\(x^3+y^3=\left(x+y\right).\left(x^2-xy+y^2\right)=1.\left(x^2+y^2+2xy-3xy\right)\)
\(=1^2-3xy\)
=1+3=4
câu b tương tự
trả lời ngay cho mình nhé
bài 1 tìm x thuộc Z
a) x^2+2.x=0
b) (-2.x).(-4.x)+28=100
c) 5.x.(-x)^2+1=6
d) 3.x^2+12.x=0
e) 4.x.3=4.x
bài 2: tìm x,y thuộc Z
a) (x+2).(x-1)=0
b) (y+1).(x.y-1)=3
c) 2.x.y+x-6.y=15
d) x.y+2.x-y+9
e)3.x.y-y=-12
g) 3.x.y-3.x-y=0
h) 5.x.y+5.x+2.y =-16
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
d, 3\(x^2\) + 12\(x\) = 0
3\(x.\left(x+4\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-4; 0}
e, 4.\(x.3\) = 4.\(x\)
12\(x\) - 4\(x\) = 0
8\(x\) = 0
\(x\) = 0