Những câu hỏi liên quan
PQ
Xem chi tiết
PQ
Xem chi tiết
DH
4 tháng 8 2017 lúc 10:13

Biến đổi tương đương :

\(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|\ge\sqrt{a^2+b^2+c^2-ab-bc-ac}\)

\(\Leftrightarrow4\left|a-b\right|+4\left|b-c\right|+4\left|c-a\right|\ge\sqrt{2a^2+2b^2+2c^2-2ab-2bc-2ac}\)

\(\Leftrightarrow4\left|a-b\right|+4\left|b-c\right|+4\left|c-a\right|\ge\sqrt{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

Đặt \(\left|a-b\right|=x;\left|b-c\right|=y;\left|c-a\right|=z\)

\(BĐT\Leftrightarrow4x+4y+4z\ge\sqrt{x^2+y^2+z^2}\)

\(\Leftrightarrow16\left(x^2+y^2+z^2+2xy+2yz+2xy\right)\ge x^2+y^2+z^2\)

\(\Leftrightarrow15x^2+15y^2+15z^2+32xy+32yz+32xz\ge0\) (luôn đúng vì \(x;y;z\ge0\))

Vậy \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|\ge\sqrt{a^2+b^2+c^2-ab-bc-ac}\)

Bình luận (0)
H24
Xem chi tiết
KN
21 tháng 7 2019 lúc 11:10

Đặt\(A=\left|a-b\right|+\left|b-c\right|+\left|c-d\right|+\left|d-a\right|\)

\(\Rightarrow A=\left|a-b\right|+\left(a-b\right)+\left|b-c\right|+\left(b-c\right)\)

\(+\left|c-d\right|+\left(c-d\right)+\left|d-a\right|+\left(d-a\right)\)

Ta có: \(\left|x\right|+x=\hept{\begin{cases}2x,x\ge0\\0,x\le0\end{cases}}\)nên \(\left|x\right|+x\)luôn là số chẵn.

Vậy A là số chẵn hay \(\left|a-b\right|+\left|b-c\right|+\left|c-d\right|+\left|d-a\right|\)luôn chẵn

Bình luận (0)
NH
Xem chi tiết
DN
25 tháng 6 2017 lúc 9:02

Em mới học lớp 7 nên cũng ko hiểu kĩ lắm,em nghĩ thế này:

+)Nếu a và b cùng dấu,=>|a+b|=|a|+|b|(vì cách cộng 2 số cùng dấu là cộng 2 giá trị tuyệt đối rồi đặt dấu chung.

Nhưng nếu khác dấu thì em thấy ko hợp lí lắm.

Em lấy ví dụ minh họ như sau:

a=-2;b=3.

=>|a|+|b|=2+3=5.

Mà |a+b|=|-2+3|=|1|=1.

=>Điều cần chứng minh là ko hoàn toàn đúng.

Vậy bài toán ko thể chứng minh.

E trình bày hơi lủng củng,thông cảm cho e vì e dốt văn lắm!

Bình luận (0)
NH
26 tháng 6 2017 lúc 9:15

Hihi sorry, mk ghi nhầm đề

Bình luận (0)
KK
23 tháng 3 2018 lúc 23:16

BĐT. Điều trên luôn  luôn đúng với mọi x. sai chỗ nào 

Bình luận (0)
SL
Xem chi tiết
HN
Xem chi tiết
TA
23 tháng 7 2017 lúc 22:52

\(\forall a,b\in R\)  ta luôn có  \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)

Ta biến đổi tương đương biểu thức đã cho

\(\frac{\left|a+b\right|}{1+\left|a+b\right|}\le\frac{\left|a\right|+\left|b\right|}{1+\left|a\right|+\left|b\right|}\)  (*)

\(\Leftrightarrow\left|a+b\right|.\left(1+\left|a\right|+\left|b\right|\right)-\left(\left|a\right|+\left|b\right|\right).\left(1+\left|a+b\right|\right)\le0\)

\(\Leftrightarrow\left|a+b\right|+\left|a+b\right|.\left(\left|a\right|+\left|b\right|\right)-\left(\left|a\right|+\left|b\right|\right)-\left|a+b\right|.\left(\left|a\right|+\left|b\right|\right)\le0\)

\(\Leftrightarrow\left|a+b\right|-\left(\left|a\right|+\left|b\right|\right)\le0\)

\(\Leftrightarrow\left|a+b\right|\le\left|a\right|+\left|b\right|\)  (luôn đúng)

Do đó (*) được chứng minh

Đẳng thức xảy ra khi và chỉ khi a, b cùng dấu.

Bình luận (0)
LM
Xem chi tiết
VH
Xem chi tiết
LV
Xem chi tiết
H24
9 tháng 3 2017 lúc 21:59

do tia phân giác của góc A và B cắt nhau tại I =>I là trọng tâm=>IC là phân giác của góc C

Bình luận (0)