Pt đa thức thành NT :
câu 16 : 225 - 4 x mũ 2 - 4 xy - y mũ 2
Pt đa thức thành nt :
câu 17 : x mũ 2 - 3x + xy - 3y
Pt đa thức thành NT :
câu 15 : -x mũ 2 + 6x + 6y + y mũ 2
Pt đa thức thành NT :
câu 15 : -x mũ 2 + 6x + 6y + y mũ 2
\(-x^2+6x+6y+y^2\\=-(x^2-6x+9)+(y^2+6y+9)\\=-(x-3)^2+(y+3)^2\\=(y+3)^2-(x-3)^2\\=[(y+3)-(x-3)][(y+3)+(x-3)]\\=(y+3-x+3)(y+3+x-3)\\=(y-x+6)(x+y)\)
pt đa thức thành nt :
a , 4 x mũ 2 - 2x - y mũ 2 - y
b, 9 x mũ 2 - 25 y mũ 2 - 6x + 10y
c, x mũ 3 - 2 x mũ 2 + 2x - 1
d, x mũ 4 + 2 x mũ 3 - 4x - 4
a) \(4x^2-2x-y^2-y=\left(4x^2-y^2\right)-\left(2x+y\right)\)
\(=\left(2x+y\right)\left(2x-y\right)-\left(2x+y\right)=\left(2x+y\right)\left(2x-y-1\right)\)
b) \(9x^2-25y^2-6x+10y=\left(3x-5y\right)\left(3x-5y\right)-2\left(3x-5y\right)\)
\(=\left(3x-5y\right)\left(3x+5y-2\right)\)
c) \(x^3-2x^2+2x-1=x^3-1-2x^2+2x\)
\(=\left(x-1\right)\left(x^2+x+1\right)-2x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1-2x\right)=\left(x-1\right)\left(x^2-x+1\right)\)
d) \(x^4+2x^3-4x-4=x^4-4+2x^3-4x\)
\(=\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)=\left(x^2-2\right)\left(x^2+2+2x\right)\)
bài 1; phân tích các đa thức sau thành nhân tử
6, x mũ 2 y + xy mũ 2 - 4x - 4y
7, 10ax - 5ay - 2x + y
8, x mũ 3 - 2x mũ 2 + 2a - 4
9, 4x mũ 2 - y mũ 2 + 8y - 16
6, \(x^2y+xy^2-4x-4y=xy\left(x+y\right)-4\left(x+y\right)=\left(xy-4\right)\left(x+y\right)\)
7, \(10ax-5ay-2x+y=5a\left(2x-y\right)-\left(2x-y\right)=\left(5a-1\right)\left(2x-y\right)\)
8, xem lại đề bạn nhé
9, \(4x^2-y^2+8y-16=4x^2-\left(y^2-8y+16\right)=4x^2-\left(y-4\right)^2\)
\(=\left(2x-y+4\right)\left(2x+y-4\right)\)
Trả lời:
6, x2y + xy2 - 4x - 4y = ( x2y + xy2 ) - ( 4x + 4y ) = xy ( x + y ) - 4 ( x + y ) = ( x + y )( xy - 4 )
7, 10ax - 5ay - 2x + y = ( 10ax - 5ay ) - ( 2x - y ) = 5a ( 2x - y ) - ( 2x - y ) = ( 2x - y )( 5a - 1 )
8, Sửa đề: x3 - 2x2 + 2x - 4 = ( x3 - 2x2 ) + ( 2x - 4 ) = x2 ( x - 2 ) + 2 ( x - 2 ) = ( x - 2 )( x2 + 2 )
9, 4x2 - y2 + 8y - 16 = 4x2 - ( y2 - 8y + 16 ) = 4x2 - ( y - 4 )2 = ( 2x - y + 4 )( 2x + y - 4 )
viết các đẳng thức sau thành bình phương của 1 tổng hoặc hiệu :
a , 25 x mũ 2 - 10xy + y mũ 2
b , 4/9 x mũ 2 + 20/x xy + 25 y mũ 2
c , 16 uv mũ 2 - 8 u mũ 2 v mũ 4 - 1
\(25x^2-10xy+y^2=\left(5x\right)^2-2.5x.y+y^2=\left(5x-y\right)^2\)
\(\dfrac{4}{9}x^2+\dfrac{20}{3}xy+25y^2=\left(\dfrac{2}{3}x\right)^2+2.\dfrac{2}{3}x.5y+\left(5y\right)^2=\left(\dfrac{2}{3}x+5y\right)^2\)
phân tích đa thức sau thành nhân tử
t, x mũ 2 y - xy mũ 2 + x mũ 3 - y mũ 3
o, 4x mũ 2 - 25 + ( 2x + 7 )( 5 - 2x )
p, 5x mũ 2 - 5y mũ 2 - 10x + 10y
r, x mũ 2 - xy + 4x - 2y + 4
a)x²−2x−4y²−4ya)x²-2x-4y²-4y
=x²−2x−4y²−4y+2xy−2xy=x²-2x-4y²-4y+2xy-2xy
=(x²−2xy−2x)+(2xy−4y²−4y)=(x²-2xy-2x)+(2xy-4y²-4y)
=x(x−2y−2)+2y(x−2y−2)=x(x-2y-2)+2y(x-2y-2)
=(x+2y)(x−2y−2)=(x+2y)(x-2y-2)
b)x4+2x³−4x−4b)x4+2x³-4x-4
=x4+2x³+2x²−2x²−4x−4=x4+2x³+2x²-2x²-4x-4
=(x4+2x³+2x²)−(2x²+4x+4)=(x4+2x³+2x²)-(2x²+4x+4)
=x²(x²+2x+2)−2(x²+2x+2)=x²(x²+2x+2)-2(x²+2x+2)
=(x²−2)(x²+2x+2)=(x²-2)(x²+2x+2)
c)x³+2x²y−x−2yc)x³+2x²y-x-2y
=x²(x+2y)−(x+2y)=x²(x+2y)-(x+2y)
=(x²−1)(x+2y)=(x²-1)(x+2y)
=(x+1)(x−1)(x+2y)=(x+1)(x-1)(x+2y)
d)3x²−3y²−2(x−y)²d)3x²-3y²-2(x-y)²
=3(x²−y²)−2(x−y)²=3(x²-y²)-2(x-y)²
=3(x+y)(x−y)−2(x−y)²=3(x+y)(x-y)-2(x-y)²
=(x−y)[3(x+y)−2(x−y)]=(x-y)[3(x+y)-2(x-y)]
=(x−y)(3x+3y−2x+2y)=(x-y)(3x+3y-2x+2y)
=(x−y)(x+5y)=(x-y)(x+5y)
e)x³−4x²−9x+36e)x³-4x²-9x+36
=(x³−4x²)−(9x−36)=(x³-4x²)-(9x-36)
=x²(x−4)−9(x−4)=x²(x-4)-9(x-4)
=(x−4)(x²−9)=(x-4)(x²-9)
=(x−4)(x²−3²)=(x-4)(x²-3²)
=(x−4)(x+3)(x−3)=(x-4)(x+3)(x-3)
f)x²−y²−2x−2yf)x²-y²-2x-2y
=(x²−y²)−(2x+2y)=(x²-y²)-(2x+2y)
=(x+y)(x−y)−2(x+y)=(x+y)(x-y)-2(x+y)
=(x+y)(x−y−2)
hok tốt nhé
k đi
Pt đa thức thành nhân tử :
b, x mũ 2 - y mũ 2 + z mũ 2 - t mũ 2 - 2xz + 2yt
\(x^2-y^2+z^2-t^2-2xz+2yt=\)
\(=\left(x^2-2xz+z^2\right)-\left(y^2-2yt+t^2\right)=\)
\(=\left(x-z\right)^2-\left(y-t\right)^2=\)
\(=\left[\left(x-z\right)-\left(y-t\right)\right]\left[\left(x-z\right)+\left(y-t\right)\right]\)
\(x^2-y^2+z^2-t^2-2xz+2yt\)
\(=\left(x^2-2xz+z^2\right)-\left(y^2+2yt+t^2\right)\)
\(=\left(x-z\right)^2-\left(y-t\right)^2\)
\(=\left(x-z+y-t\right)\times\left(x-z-y+t\right)\)
\(x^2-y^2+z^2-t^2-2xz+2yt\)
\(=x^2-2xz+z^2-\left(y^2-2yt+t^2\right)\)
\(=\left(x-z\right)^2-\left(y-t\right)^2\)
\(=\left(x-z+y-t\right)\left(x-z-y+t\right)\)
bài 1; phân tích các đa thức sau thành nhân tử
1, x mũ 2( x - 3 )- 4x + 12
2, 2a(x + y) - x - y
3, 2x - 4 + 5x mũ 2 - 10x
4, 5x mũ 2 - 12x - 7x + 14
5, xy - y mũ 2 - 3x + 3y
1, \(x^2\left(x-3\right)-4x+12=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)
2, \(2a\left(x+y\right)-x-y=2a\left(x+y\right)-\left(x+y\right)=\left(2a-1\right)\left(x+y\right)\)
3, \(2x-4+5x^2-10x=2\left(x-2\right)+5x\left(x-2\right)=\left(2+5x\right)\left(x-2\right)\)
4, sửa đề :
\(6x^2-12x-7x+14=6x\left(x-2\right)-7\left(x-2\right)=\left(6x-7\right)\left(x-2\right)\)
5, \(xy-y^2-3x+3y=y\left(x-y\right)-3\left(x-y\right)=\left(y-3\right)\left(x-y\right)\)
a) x2(x-3)-4x+12
=x2(x-3)-4(x-3)
=(x-3)(x2-4)
=(x-3)(x-2)(x+2)
b) 2a(x+y)-x-y
=2a(x+y)-(x+y)
=(x+y)(2a-1)
c) 2x-4+5x2-10x
=2(x-2)+5x(x-2)
=(x-2)(2+5x)
d) 5x2-12x-7x+14
=5x2-19x+14
e) xy-y2-3x+3y
=y(x-y)-3(x-y)
=(x-y)(y-3)
#H
Trả lời:
1, x2 ( x - 3 ) - 4x + 12 = x2 ( x - 3 ) - 4 ( x - 3 ) = ( x - 3 )( x2 - 4 ) = ( x - 3 )( x - 2 )( x + 2 )
2, 2a ( x + y ) - x - y = 2a ( x + y ) - ( x + y ) = ( x + y )( 2a - 1 )
3, 2x - 4 + 5x2 - 10x = ( 2x - 4 ) + ( 5x2 - 10x ) = 2 ( x - 2 ) + 5x ( x - 2 ) = ( x - 2 )( 2 + 5x )
4, Sửa đề: 6x2 - 12x - 7x + 14 = ( 6x2 - 12x ) - ( 7x - 14 ) = 6x ( x - 2 ) - 7 ( x - 2 ) = ( x - 2 )( 6x - 7 )
5, xy - y2 - 3x + 3y = ( xy - y2 ) - ( 3x - 3y ) = y ( x - y ) - 3 ( x - y ) = ( x + y )( y - 3 )