4x+4=(-6).(-2)
Phân tích đa thức thành nhân tử
A= 6x^4-5x^3+4x^2+2x-1
B=4x^4+4x^3+5x^2+8x-6
C=x^4+x^3-5x^2+x-6
A = 6x4 - 5x3 + 4x2 + 2x - 1
= 6x4 + 3x3 - 8x3 - 4x2 + 8x2 + 4x - 2x - 1
= 3x3. ( 2x + 1 ) - 4x2 ( 2x + 1 ) + 4x ( 2x + 1 ) - ( 2x + 1 )
= ( 2x + 1 ) ( 3x3 - 4x2 + 4x - 1 )
= ( 2x + 1 ) ( 3x3 - x2 - 3x2 + x + 3x - 1 )
= ( 2x + 1 ) [ x2 ( 3x - 1 ) - x ( 3x - 1 ) + ( 3x - 1 ) ]
= ( 2x + 1 ) ( 3x - 1 ) ( x2 - x + 1 )
B = 4x4 + 4x3 + 5x2 + 8x - 6
= 4x4 - 2x3 + 6x3 - 3x2 + 8x2 - 4x + 12x - 6
= 2x3 ( 2x - 1 ) + 3x2 ( 2x - 1 ) + 4x ( 2x - 1 ) + 6 ( 2x - 1 )
= ( 2x - 1 ) ( 2x3 + 3x2 + 4x + 6 )
= ( 2x - 1 ) [ x2 ( 2x + 3 ) + 2 ( 2x + 3 ) ]
= ( 2x - 1 ) ( 2x + 3 ) ( x2 + 2 )
C = x4 + x3 - 5x2 + x - 6
= x4 - 2x3 + 3x3 - 6x2 + x2 - 2x + 3x - 6
= x3 ( x - 2 ) + 3x2 ( x - 2 ) + x ( x - 2 ) + 3 ( x - 2 )
= ( x - 2 ) ( x3 + 3x2 + x + 3 )
= ( x - 2 ) [ x2 ( x + 3 ) + ( x + 3 ) ]
= ( x - 2 ) ( x + 3 ) ( x2 + 1 )
Phân tích đa thức thành nhân tử.
1)x^4+2x^3-4x-4
2)(x+2)(x+4)(x+6)(x+8)+16
3)(x^2+x).(x^2+x+1)-6
4)(x^2+4x+8)^2+3x(x^2+4x+8)
ta có
\(5x=-3y=4z\)
\(\Rightarrow\frac{x}{12}=-\frac{y}{20}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{12}=-\frac{y}{20}=\frac{3z}{45}=\frac{x-y+3z}{12+20+45}=\frac{7}{77}=\frac{1}{11}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{11}.12=\frac{12}{11}\\-y=\frac{1}{11}.20=\frac{20}{11}\\3z=\frac{1}{11}.45=\frac{45}{11}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{12}{11}\\y=-\frac{20}{11}\\z=\frac{45}{11}:3=\frac{15}{11}\end{cases}}\)
Vậy \(\hept{\begin{cases}x=\frac{12}{11}\\y=\frac{-20}{11}\\z=\frac{15}{11}\end{cases}}\)
Câu 2: Tìm x biết:
a. \(\sqrt{x-1}=2\)
b. \(\sqrt{3x+1}=\sqrt{4x-3}\)
c. \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
d. \(\sqrt{x^2-4x+4}=\sqrt{6+2\sqrt{5}}\)
\(a,\Leftrightarrow x-1=4\Leftrightarrow x=5\\ b,\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\3x+1=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow x=4\\ c,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=3\\ \Leftrightarrow x+5=9\\ \Leftrightarrow x=4\left(tm\right)\)
\(d,\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{5}+1\right)^2}\\ \Leftrightarrow\left|x-2\right|=\sqrt{5}+1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{5}+1\\2-x=\sqrt{5}+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=1-\sqrt{5}\end{matrix}\right.\)
1) \(\sqrt{x^2-4x+5}+3=4x-x^2\)
2) \(4\sqrt{x^2-6+6}=x^2-6x +9\)
3) \(\sqrt{x^2-3x^3}+\sqrt{x^2-3x+6}=3\)
4) \(\sqrt[3]{2-x}=1-\sqrt{x-1}\)
a, 3 - (7x - 6 ) - ( -4x + 2 ) = - ( -4 - 3x)
b, 4x + ( -8x + 3 ) = - (-7x +6 ) - 5 x
c, 6 - ( -4 -3x ) - ( 2 - 5x ) = 7 - ( 6x - 1 )
Làm mẫu 1 câu rồi cứ dựa vào đấy mà làm em nhé
a)
= 3 - 7x + 6 + 4x - 2 = 4 + 3x
= -7x + 4x - 3x = 4 - 3 - 6 + 2
<=> -6x = -3
<=> x = -3 : (-6)
<=> x = 1/2
a, 3 - (7x - 6) - (-4x + 2) = - (-4 - 3x)
3 - 7x + 6 + 4x - 2 = 4 + 3x
-7x + 4x - 3x = 4 - 3 - 6 + 2
-6x = -3
x = (-3) : (-6)
x = 0,5
b, 4x + (-8x + 3) = -(-7x + 6) - 5x
4x - 8x + 3 = 7x - 6 - 5x
4x - 8x - 7x + 5x = -6 - 3
-6x = -9
x = (-9) : (-6)
x = 1,5
c, 6 - (-4 - 3x) - (2 - 5x) = 7 - (6x - 1)
6 + 4 + 3x - 2 + 5x = 7 - 6x + 1
3x + 5x + 6x = 7 + 1 - 6 - 4 + 2
14x = 0
x = 0 : 14
x = 0
= 3 - 7x + 6 + 4x - 2 = 4 + 3x
= -7x + 4x - 3x = 4 - 3 - 6 + 2
<=> -6x = -3
<=> x = -3 : (-6)
<=> x = 1/2
b, 4x + (-8x + 3) = -(-7x + 6) - 5x
4x - 8x + 3 = 7x - 6 - 5x
4x - 8x - 7x + 5x = -6 - 3
-6x = -9
x = (-9) : (-6)
x = 1,5
c, 6 - (-4 - 3x) - (2 - 5x) = 7 - (6x - 1)
6 + 4 + 3x - 2 + 5x = 7 - 6x + 1
3x + 5x + 6x = 7 + 1 - 6 - 4 + 2
14x = 0
x = 0 : 14
x = 0
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
2.
ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)
\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)
Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)
\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)
Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:
\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)
\(\Leftrightarrow10b+40=3\left(b+8\right)b\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)
TH1: \(b=2\Leftrightarrow...\)
TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)
tìm x biết
a,4x2-4x+1=0
b,4x2-4x-8=0
c,(3x-4)2-14 (3x-4)(6+3x)+49(3x+6)=16
đừng làm tắt nhé
Camon các ty
\(a,4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x\right)^2+2.2x.1+1^2=0\)
\(\Leftrightarrow\left(2x+1\right)^2=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
\(b,4x^2-4x-8=0\)
\(\Leftrightarrow4\left(x^2-x-2\right)=0\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
\(c,\left(3x-4\right)^2-14\left(3x-4\right)\left(6+3x\right)+49\left(3x+6\right)=16\)
\(\Leftrightarrow\left(3x-4\right)^2-14\left(3x-4\right)\left(3x+6\right)\left(3x+6\right)+49=16\)
\(\Leftrightarrow\left(3x-4\right)^2-14\left(3x-4\right)\left(3x+6\right)+49\left(3x+6\right)=16\)
\(\Leftrightarrow9x^2-24x+16-126x^2-252x+168x+336+147x+294=16\)
\(\Leftrightarrow-117x^2+39x+646=16\)
\(\Leftrightarrow117x^2-39x-646+16=0\)
\(\Leftrightarrow117x^2-39x+630=0\)
\(\Leftrightarrow...\)
a) \(\left(2x\right)^2-2.2.x+1=\left(2x-1\right)^2\)
b) \(\left(2x\right)^2-2.2.x+1-9=\left(2x-1\right)^2-3^2\)
\(=\left(2x-1-3\right)\left(2x-1+3\right)=\left(2x-4\right)\left(2x+2\right)\)
c)
a,5(3-2x)+5(x-4)=6-4x
b-5(2-x)+4(x-3)=10x-15
C,2(4x-8)-7(x-3)=|-4|(3-2)
d,8(x-|-7|)-6(x-2)=|-8|.6-50
\(a)5\left(3-2x\right)+5\left(x-4\right)=6-4x\)
\(\Leftrightarrow5\left(3-2x+x-4\right)=6-4x\)
\(\Leftrightarrow5\left(-x-1\right)=6-4x\)
\(\Leftrightarrow-5x-5=6-4x\)
\(\Leftrightarrow-x=11\Leftrightarrow x=-11\)
Vậy \(x=-11\)
\(b)-5\left(2-x\right)+4\left(x-3\right)=10x-15\)
\(\Leftrightarrow-10+5x+4x-12=10x-15\)
\(\Leftrightarrow-22+9x=10x-15\)
\(\Leftrightarrow-x=7\Leftrightarrow x=-7\)
Vậy \(x=-7\)
phân tích
1,(x-2)^4+(x-3)^4-1
2,(x-1)^4+(x+3)^4-512
3,(x-2)^6+(x-4)^6-64
4,x^4-3x^3+6x^2+3x+1
5,3x^4-2x^3-15x^2-2x+3
6,x^6-2x^5-4x^4+6x^3+4x^2-2x-1
Tìm x 2.(5x-8)-3(4x-5)=4(3x-4)+11 3 . 2(x³-1)-2x²(x+2x⁴)+(4x⁵+4)x=6
`2//(5x-8)-3(4x-5)=4(3x-4)`
`<=>5x-8-12x+15=12x-16`
`<=>-19x=-23`
`<=>x=23/19` Vậy `x=23/19`
`3//2(x^3-1)-2x^2(x+2x^4)+(4x^5+4)x=6`
`<=>2x^3-2-2x^3-4x^6+4x^6+4x=6`
`<=>4x=8`
`<=>x=2` Vậy `x=2`