S= 1 - 3 + 3^2 - 3^3 + ... - 3^99
a) CMR S là B(20)
b) Tính S, CMR: 3^100 chia 4 dư 1
Cho : S=1-3+32-33+...+398-399
a) CMR : S là B(-20)
b) Tính tỗng S, từ đó => 3100 chia 4 dư 1
a) S = ( 1 - 3 + 32 - 33 ) + ( 34 - 35 + 36 - 37 ) + ... + ( 396 - 397 + 398 - 399 )
S = ( 1 - 3 + 32 - 33 ) + 34 ( 1 - 3 + 32 - 33 ) + ... + 396 ( 1 - 3 + 32 - 33 )
S = ( 1 - 3 + 32 - 33 ) ( 1 + 34 + ... + 396 )
S = ( 1 + 34 + .... + 396 ) \(⋮\)-20
Suy ra S là B(-20)
b) S = 1 - 3 + 32 - 33 + .... + 398 - 399
3S = 3 - 32 + 33 - 34 + ... + 399 - 3100
4S = 1 - 3100
\(\Rightarrow S=\frac{1-3^{100}}{4}\)
vì S là 1 số nguyên nên \(1-3^{100}⋮4\) \(\Rightarrow\)3100 chia 4 dư 1
a) \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\) có 100 số hạng
\(=\left(1-3+3^2-3^3\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\) có 25 nhóm
\(=\left(-20\right)+\left(-20\right).3^4+...+\left(-20\right).3^{96}\)
\(=\left(-20\right).\left(1+3^4+...+3^{96}\right)⋮\left(-20\right)\)
=> S là B(-20)
b) Từ câu a
=> \(3^4.S=\left(-20\right).\left(3^4+3^8+...+3^{96}+3^{100}\right)\)
=> \(3^4.S-S=\left(-20\right).\left(3^4+3^8+...+3^{96}+3^{100}\right)-\left(-20\right)\left(1+3^4+...+3^{92}+3^{96}\right)\)
=> \(\left(3^4-1\right)S=\left(-20\right)\left(3^{100}-1\right)\)
=> \(80S=-20.\left(3^{100}-1\right)\)
=> \(S=-\frac{3^{100}-1}{4}\) mà S là số nguyên
=> \(3^{100}-1⋮4\)=> 3^100 : 4 dư 1
cho S = 1 - 3 + 32 - 33 + ... + 398 - 399
a) CMR : S là B ( -20 )
b) tính S . từ đó => 3100 chia 4 dư 1
Mình đang bí câu a.Mình giải câu b nè :
S = 1 - 3 + 32 - 33 + ... + 398 - 399 = (1 - 3) + 32.(1 - 3) + ... + 398.(1 - 3) = -2.(1 + 32 + ... + 398)
Đặt\(A=\frac{S}{-2}\)thì A = 1 + 32 + ... + 398
=> 9A = 32 + 34 + ... + 3100 => 8A = 9A - A = 3100 - 1\(\Rightarrow A=\frac{3^{100}-1}{8}\)
\(\Rightarrow S=-2.\frac{3^{100}-1}{8}=\frac{1-3^{100}}{4}\)
\(S\in Z\)nên 1 - 3100 .: 4 mà 1 : 4 dư 1 nên theo tính chất đồng dư đảo thì 3100 : 4 dư 1
Cho S=1-3+3^2-3^3+...+3^98-3^99
a, CMR S là bội của -20.
b, Tính S, từ đó suy ra 3^100 chia cho 4 dư 1
Giải chi tiết hộ mk nha
S=-2+3^2(1-3)+.......3^98(1-3)=-2+3^2.(-2)......3^98.(-2)= -2(1+3^2+3^4+......3^98) bên trong ngoặc là tổng có quy luật.
Cho S = 1-3+32-33+...+398-399
a) CMR: S chia hết cho 20
b) CMR: 3100:4 dư 1
bài 12: cho S = 1-3+32+33+...+398-399
a, CMR : S là bội của -20
b. Tính S từ đó suy ra 3100 chia hết cho 4 dư 1
a,S=(1-3+32-33)+......+(396-397+398-399)
S=(-20)+...........+396.(1-3+32-33)
S=(-20)+..........+396.(-20)
S=(1+34+...........+396).(-20) chia hết cho (-20){đpcm}
b,3S=3-32+33-34+...........+399-3100
3S+S=4S=1-3100
S=\(\frac{1-3^{100}}{4}\)
Mà S chia hết cho (-20) nên S chia hết cho 4
=>1-3100 chia hết cho 4
Do 1 chia 4 dư 1 nên 3100 chia 4 dư 1
=>đpcm
Cho S 1 3 3 mũ 2 3 mũ 3 .... 3 mũ 98 3 mũ 99a Chứng minh rằng S là bội của 20b Tính S, từ đó suy ra 3mux 100 chia 4 dư 1
Cho S = 1 - 3 + 32 - 33 + ... + 398 - 399
a) CMR : S là B ( -20 )
b) Tính S . từ đó => 3100 : 4 dư 1
Cho S=1-3+32-33+.....+398-399
CMR: S là bội của -20
Tính S từ đó suy ra 3100 chia cho 4 dư 1
Gửi tớ cách giải nhé ^^
Cậu tính ra S có bao nhiêu số hạng rồi vì Scó 100 số hạng.Mà S chia hết cho bốn rồi nhóm bốn số hạn của S vào nhau
Cho S = 1 - 3 + 32 - 33 + ... + 398 - 399
a) CMR: S là bội của -20
b) Tính S, từ đó suy ra 3100 chia cho 4 dư 1