Những câu hỏi liên quan
H24
Xem chi tiết
OM
Xem chi tiết
DH
25 tháng 5 2021 lúc 15:39

\(2x^2+9y^2-6xy-6x-12y+2004\)

\(=x^2-10x+25+x^2+9y^2+4-6xy+4x-12y+1975\)

\(=\left(x-5\right)^2+\left(x-3y+2\right)^2+1975\ge1975\)

Dấu \(=\)khi \(\hept{\begin{cases}x-5=0\\x-3y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\).

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
MQ
14 tháng 8 2015 lúc 17:57

=-12y

**** cho mình nha Thần Thánh

Bình luận (0)
LT
Xem chi tiết
NT
4 tháng 8 2016 lúc 21:10

Sao ko cóp phần sau z

Bình luận (0)
H24
4 tháng 8 2016 lúc 21:15

tìm min thì tách thích hợp ra toàn phương

Bình luận (0)
MT
Xem chi tiết
TD
Xem chi tiết
NH
Xem chi tiết
AH
3 tháng 2 2018 lúc 19:38

Lời giải:

Ta có:

\(M=2x^2+x(6y+6)+(9y^2-12y+2018)\)

\(\Leftrightarrow 2x^2-2x(3y+3)+(9y^2-12y+2018-M)=0\)

Coi đây là PT bậc 2 ẩn $x$. Ta có:

\(\Delta'=(3y+3)^2-2(9y^2-12y+2018-M)\geq 0\)

\(\Leftrightarrow -9y^2+42y-4027+2M\geq 0\)

\(\Leftrightarrow 2M\geq 9y^2-42y+4027\)

Mà \(9y^2-42y+4027=(3y-7)^2+3978\geq 3978\)

\(\Rightarrow 2M\geq 3978\Leftrightarrow M\geq 1989\)

Vậy \(M_{\min}=1989\)

Dấu bằng xảy ra khi \(x=5; y=\frac{7}{3}\)

Bình luận (0)
NM
Xem chi tiết
TA
Xem chi tiết
LH
1 tháng 11 2016 lúc 20:55

Ta có :

\(A=2x^2+9y^2-6xy-6x-12y+2004\)

\(=\left(x^2-6xy+9y^2\right)+4\left(x-3y\right)+x^2-10x+2004\)

\(=\left(x-3y\right)^2+4\left(x-3y\right)+4+x^2-10x+25+1975\)

\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+1975\ge1975\)

\(MinA=1975\Leftrightarrow x=5;y=\frac{7}{3}\)

Vậy ...

Bình luận (0)
SV
1 tháng 11 2016 lúc 20:56

2x^2+9y^2- 6xy -6x-12y+2004

= ( x^2-6xy+9y^2)+ ( 4x-12y) + x^2-10x+2004

= ( x-3y)^2 + 4( x-3y) +4 + ( x^2-10x+25)+1975

= ( x-3y-2)^2 + (x-5)^2 + 1975

vì (x-3y-2)^2 >= 0 ( với mọi x,y) 

   ( x-5) ^2 >= 0 ( với mọi x) 

nên ( x-3y-2)^2 + ( x-5)^2 +1975 >= 1975

dấu bằng xảy ra khi và chỉ khi

(x-5)^2=0 => x-5 = 0 => x=5

( x-3y-2)^2=0=> x-3y-2=0=> x-3y=2=> 5- 3y =2=> 3y=3=> y=1

vậy giá trị nhỏ nhất của A là 1975 tại x= 5 và y=1

Bình luận (0)