Tìm x, y, z nguyên thỏa mãn x+y+z+4=\(2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
Tìm bộ ba số x,y,z thỏa mãn : \(x+y+z+4=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-5}\)
\(x+y+z=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
tìm x,y,z thỏa mãn
tìm x, y,x thỏa mãn \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge1\\y\ge2\\z\ge3\end{cases}}\)
Với điều kiện trên thì pt đã cho tương đương với :
\(\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left[\left(y-2\right)-4\sqrt{y-2}+4\right]+\left[\left(z-3\right)-6\sqrt{z-3}+9\right]=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
Mà \(\left(\sqrt{x-1}-1\right)^2\ge0,\left(\sqrt{y-2}-2\right)^2\ge0,\left(\sqrt{z-3}-3\right)^2\ge0\)
\(\Rightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2\ge0\)
Vậy đẳng thức xảy ra khi \(\hept{\begin{cases}\left(\sqrt{x-1}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{z-3}-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\) (tmđk)
ĐKXĐ : {
x≥1 |
y≥2 |
z≥3 |
Với điều kiện trên thì pt đã cho tương đương với :
[(x−1)−2√x−1+1]+[(y−2)−4√y−2+4]+[(z−3)−6√z−3+9]=0
⇔(√x−1−1)2+(√y−2−2)2+(√z−3−3)2=0
Mà (√x−1−1)2≥0,(√y−2−2)2≥0,(√z−3−3)2≥0
⇒(√x−1−1)2+(√y−2−2)2+(√z−3−3)2≥0
Vậy đẳng thức xảy ra khi {
(√x−1−1)2=0 |
(√y−2−2)2=0 |
(√z−3−3)2=0 |
Tìm x,y,z thỏa mãn : \(x+y+x+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
Sai đề kìa \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x-1}+1-1\right)+\left(y-4\sqrt{y-2}+4-2\right)+\left(z-6\sqrt{z-3}+9-3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)
Sai đề kìa x+y+z+8=2√x−1+4√y−2+6√z−3
⇔x+y+z+8−2√x−1−4√y−2−6√z−3=0
⇔(x−2√x−1+1−1)+(y−4√y−2+4−2)+(z−6√z−3+9−3)=0
⇔(√x−1−1)2+(√y−2−2)2+(√z−3−3)2=0
⇒{
√x−1−1=0 |
√y−2−2=0 |
√z−3−3=0 |
⇒{
√x−1=1 |
√y−2=2 |
√z−3=3 |
Tìm các số x , y , z thỏa mãn đẳng thức :
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\Rightarrow\left(x-1\right)-2\sqrt{x-1}+1\)\(+\left(y-2\right)-4\sqrt{y-2}+4\)\(+\left(z-3\right)-6\sqrt{z-3}+9\)\(=0\)
\(\Rightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}}\)
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-2\sqrt{y-2}.2+4\right)+\left(z-3-2\sqrt{z-3}.3+9\right)=0\)
\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)( 1 )
Mà \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2\ge0\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(\sqrt{x-1}-1\right)^2=\left(\sqrt{y-2}-2\right)^2=\left(\sqrt{z-3}-3\right)^2=0\)
từ đó tìm được : \(x=2;y=6;z=12\)
ĐKXĐ \(x\ge1,y\ge2,z\ge3\)
Phương trình đã cho tương đương với :
\(x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0.\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
Mà \(\left(\sqrt{x-1}-1\right)^2\ge0;\left(\sqrt{y-2}-2\right)^2\ge0;\left(\sqrt{z-3}-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x-1}-1\right)^2=\left(\sqrt{y-2}-2\right)^2=\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x-1=1\\y-2=4\\z-3=9\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}\left(tmđk\right).}\)
a.tìm a+b+c=2\(\sqrt{a}+2\sqrt{b-3}+2\sqrt{c}\)
b.tìm x,y,z thỏa mãn x+y+z+8=2\(\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
Mình chia thành 2 phần lời giải để thuận tiện trong việc quan sát nhé!
a. \(a+b+c=2\sqrt{a}+2\sqrt{b-3}+2\sqrt{c}\left(ĐK:a\ne0;b\ne3;c\ne0\right)\\ \Leftrightarrow a-2\sqrt{a}+1+b-3-2\sqrt{b-3}+1+c-2\sqrt{c}+1=0\\ \Leftrightarrow\left(\sqrt{a}-1\right)^2+\left(\sqrt{b-3}-1\right)^2+\left(\sqrt{c}-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\b=4\\c=1\end{matrix}\right.\)
Vậy \(\left(a;b;c\right)=\left(1;4;1\right)\)
b. \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\left(ĐK:x\ne1;y\ne2;z\ne3\right)\\ x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{y-3}+9=0\\ \Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(2;4;6\right)\)
P/s: Trước khi kết luận, kiểm tra lại điều kiện thấy thỏa mãn rồi nên mình kết luận luôn nhé. Còn trong bài làm bạn nên ghi kết quả kiểm tra điều kiện cạnh giá trị mới tìm được nhé.
Tìm các số thực x, y, z thỏa mãn đẳng thức
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)
\(\Leftrightarrow\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left[\left(y-2\right)-4\sqrt{y-2}+4\right]+\left[\left(z-3\right)-6\sqrt{z-3}+9\right]=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)
ĐK: \(x\ge1,y\ge2,z\ge3\).
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)(thỏa mãn)
ĐK : x ≥ 1 ; y ≥ 2 ; z ≥ 3
\(\Leftrightarrow\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left[\left(y-2\right)-4\sqrt{y-2}+4\right]+\left[\left(z-3\right)-6\sqrt{z-3}+9\right]=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\left(tm\right)\)
Cho ba số nguyên dương x,y,z thỏa mãn:\(\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-z}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}=14\)
Tìm x,y,z
Đặt \(a=\sqrt{2x-3}\) ; \(b=\sqrt{y-2}\) ; \(c=\sqrt{3z-1}\) (\(a,b,c>0\))
Ta có : \(\frac{1}{a}+\frac{4}{b}+\frac{16}{c}+a+b+c=14\)
\(\Leftrightarrow\left(\sqrt{2x-3}+\frac{1}{\sqrt{2x-3}}-2\right)+\left(\sqrt{y-2}+\frac{4}{\sqrt{y-2}}-4\right)+\left(\sqrt{3z-1}+\frac{16}{\sqrt{3z-1}}-8\right)=0\)
\(\Leftrightarrow\left[\frac{\left(2x-3\right)-2\sqrt{2x-3}+1}{\sqrt{2x-3}}\right]+\left[\frac{\left(y-2\right)-4\sqrt{y-2}+4}{\sqrt{y-2}}\right]+\left[\frac{\left(3z-1\right)-8\sqrt{3z-1}+16}{\sqrt{3z-1}}\right]=0\)
\(\Leftrightarrow\frac{\left(\sqrt{2x-3}-1\right)^2}{\sqrt{2x-3}}+\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}+\frac{\left(\sqrt{3z-1}-4\right)^2}{\sqrt{3z-1}}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2x-3}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{3z-1}-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}}}\)(TMĐK)
Vậy : \(\left(x;y;z\right)=\left(2;6;\frac{17}{3}\right)\)
Phần đặt ẩn a,b,c bạn bỏ đi nhé ^^
Với các số thực x>1, y>2, z>3 thỏa mãn x+y+z= 28 tìm GTLN của biểu thức
\(P=\sqrt{x-1}+2\sqrt{y-4}+3\sqrt{z-9}\)
giải bằng Bunhiaskopki nha bạn, search gg
Ta có P \(\le\dfrac{1^2+\left(\sqrt{x-1}\right)^2}{2}+\dfrac{2^2+\left(\sqrt{y-4}\right)^2}{2}+\dfrac{3^2+\left(\sqrt{z-9}\right)^2}{2}\)
\(=\dfrac{1+x-1+4+y-4+9+z-9}{2}=\dfrac{x+y+z}{2}=\dfrac{28}{2}=14\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}1=\sqrt{x-1}\\2=\sqrt{y-4}\\3=\sqrt{z-9}\end{matrix}\right.\Leftrightarrow x=2;y=8;z=18\)(tm)