Những câu hỏi liên quan
HN
Xem chi tiết
KN
7 tháng 9 2020 lúc 22:21

\(5x^2+10y^2-6xy-4x-10y+14\)

\(=\left(4x^2-4x+1\right)+\left(x^2-6xy+9y^2\right)+\left(y^2-10y+25\right)-12\)

\(=\left(2x-1\right)^2+\left(x-3y\right)^2+\left(y-5\right)^2-12\ge-12\) đề có nhầm không bạn?

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
SK
Xem chi tiết
TQ
Xem chi tiết
NH
Xem chi tiết
NN
Xem chi tiết
BT
19 tháng 7 2017 lúc 12:33

có 1 cách mà xài SOS xấu lắm chơi ko :))

Bình luận (0)
TA
25 tháng 7 2017 lúc 9:53

tìm thấy rồi Tổng hợp kỹ thuật chứng minh bất đẳng thức-Tập 2: Luyện thi học sinh giỏi toán - Tổng hợp - Google Sách

Bình luận (0)
LD
25 tháng 7 2017 lúc 10:44

đây nhé có phải là

\(a-\frac{a\left(ab+bc+ca\right)}{a^2+3bc}=\frac{a^3+3abc-a\left(ab+bc+ca\right)}{a^2+3bc}=\frac{a\left(a-b\right)\left(a-c\right)}{a^2+3bc}+\frac{3abc}{a^2+3bc}\)

Đến khi cộng vào thì phải là \(3abc\left(\frac{1}{a^2+3bc}+\frac{1}{b^2+3ac}+\frac{1}{c^2+3ab}\right)\ge\frac{3abc.9}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\)

Bình luận (0)
NM
Xem chi tiết
CH
5 tháng 5 2017 lúc 15:03

Ta có: \(3mx>x+2\Rightarrow\left(3m-1\right)x>2\left(1\right)\)

Với \(3m-1=0\Rightarrow0>2\): Vô lý nên \(3m-1\ne0.\)

Với \(3m-1>0\Leftrightarrow\Rightarrow m>\frac{1}{3}\Rightarrow x>\frac{2}{3m-1}.\)

Để (1) đúng với mọi x > 1 suy ra\(1\ge\frac{2}{3m-1}\Rightarrow\frac{2}{3m-1}-1\le0\Rightarrow\frac{3-3m}{3m-1}\le0\)

Do 3m - 1 > 0 nên \(3-3m\le0\Rightarrow m\ge1.\)

Kết hợp điều kiện suy ra \(m\ge1.\)

Với \(3m-1< 0\Leftrightarrow\Rightarrow m< \frac{1}{3}\Rightarrow x< \frac{2}{3m-1}.\)

Khi đó không xảy ra trường hợp \(\forall x>1\) thì \(x< \frac{2}{3m-1}.\)

Vậy trường hợp này loại.

Kết luận \(m\ge1.\)

Bình luận (0)
KY
Xem chi tiết
CH
11 tháng 4 2016 lúc 21:28

+ x+y=2 ta có bảng

x012
y210

+khi x=0, y=2 ta có BPT 04 + 24 >= 2

+ khi x= 1, y=1 ta có BPT 14 + 1>=2

khi x = 2, y=0 ta có BPT 2+ 0>=2

Nên x4 + y4 >=2

Bình luận (1)
TT
Xem chi tiết