Những câu hỏi liên quan
NH
Xem chi tiết
TD
Xem chi tiết
H24
25 tháng 2 2017 lúc 16:15

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{99}\right)\)

\(\frac{1}{x}-\frac{1}{999}=\frac{1}{2}.\frac{98}{99}\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{49}{99}\)

\(\frac{1}{x}=\frac{49}{99}+\frac{1}{9999}\)

\(\frac{1}{x}=\frac{50}{101}\)

\(x=1:\frac{50}{101}\)

\(x=\frac{101}{50}\)

Vậy \(x=\frac{101}{50}\)

Bình luận (0)
DT
Xem chi tiết
H24
27 tháng 6 2015 lúc 9:38

 

\(\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{99.100}-2x=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(5\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-2x=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-2x=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)\(5\left(1-\frac{1}{100}\right)-2x=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(5.\frac{99}{100}-2x=\frac{1}{2}.\frac{98}{99}\)

\(\frac{99}{20}-2x=\frac{49}{99}\)

\(2x=\frac{99}{20}-\frac{49}{99}\)

\(2x=\frac{8821}{1980}\)

\(x=\frac{8821}{1980}:2\)

\(x=\frac{8821}{3960}\)

Bình luận (0)
HM
Xem chi tiết
DP
16 tháng 7 2017 lúc 14:48

\(\frac{x}{1.3}+\frac{x}{3.5}+\frac{x}{5.7}+....+\frac{x}{97.99}=\frac{49}{99}\)

\(\Leftrightarrow\frac{x}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)=\frac{49}{99}\)

\(\Leftrightarrow\frac{x}{2}.\left(\frac{1}{1}-\frac{1}{99}\right)=\frac{49}{99}\)

\(\Leftrightarrow\frac{x}{2}.\frac{98}{99}=\frac{49}{99}\)

\(\Leftrightarrow\frac{x}{2}=\frac{49}{99}\div\frac{98}{99}\)

\(\Leftrightarrow\frac{x}{2}=\frac{1}{2}\)

\(\Leftrightarrow x=\frac{1}{2}\times2=1\)

Bình luận (0)
DL
16 tháng 7 2017 lúc 11:34

\(\frac{x}{1\cdot3}+\frac{x}{3\cdot5}+...+\frac{x}{97\cdot99}=\frac{49}{99}\)

\(\Rightarrow\frac{x}{2}\left[\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{97\cdot99}\right]=\frac{49}{99}\)

\(\Rightarrow\frac{x}{2}\left[\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right]=\frac{97}{99}\)

\(\Rightarrow\frac{x}{2}\left[1-\frac{1}{99}\right]=\frac{49}{99}\)

\(\Rightarrow\frac{x}{2}\cdot\frac{98}{99}=\frac{49}{99}\)

\(\Rightarrow\frac{x}{2}=\frac{1}{2}\)

=> x = 1/2 * 2 = 1

Bình luận (0)
NH
Xem chi tiết
VH
3 tháng 5 2018 lúc 20:02

x-1/2*(1/1-1/3)-(1/3-1/5)-...-1/97-1/99=5/6

x-1/2*(1-1/99)=5/6

x-1/2*98/99=5/6

x-49/59=5/6

x=5/6+49/59=263/198

Bình luận (0)
NT
Xem chi tiết
XO
21 tháng 5 2021 lúc 10:03

Ta có :\(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}.....\frac{98^2}{98.99}=\frac{\left(1.2.3.4...98\right).\left(1.2.3.4...98\right)}{\left(1.2.3.4...98\right).\left(2.3.4.5...99\right)}=\frac{1}{99}\)

Lại có A = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}=1-\frac{1}{99}=\frac{98}{99}\)

Lại có \(A:B=\frac{98}{99}:\frac{1}{99}=98\)

=> A = 98B

Bình luận (0)
 Khách vãng lai đã xóa
MI
21 tháng 5 2021 lúc 10:10

các bạn có  về sweet home

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NP
18 tháng 3 2016 lúc 22:08

Gọi \(A=\frac{1005}{2011}\)

A=1/3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)

A=1/1.3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)

A . 2=2/1.3 + 2/3.5 + 2/5.7 +......................+2/x.(x+2)

A . 2=1/1-1/3+1/3-1/5+1/5-1/7+..............+1/x-1/x+2

A . 2=1/1+(1/3-1/3)+(1/5-1/5)+..............+(1/x-1/x)-1/x+2

A . 2=1/1-1/x+2

Suy gia:1005/2011 . 2=1/1-1/x+2

             2010/2011    =1/1-1/x+2

             1/x+2           =1/1-2010/2011

              1/x+2          =1/2011

Suy gia:x+2=2011

            x    =2011-2

            x    =2009

Bình luận (0)
SC
Xem chi tiết
LD
26 tháng 4 2015 lúc 18:58

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)
\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}\right)=\frac{20}{41}\)
\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\frac{1}{2}.\frac{x+1}{x+2}=\frac{20}{41}\)
\(\frac{x+1}{x+2}=\frac{20}{41}:\frac{1}{2}\)
\(\frac{x+1}{x+2}=\frac{40}{41}\)
\(x+1=40 \)
\(x=40-1\)
\(x=39\)
Đúng thì ****

Bình luận (0)
H24
30 tháng 11 2018 lúc 12:35

Lương Hồ Khánh Duy trả lời đúng nhưng đúng cảu bài khác

Ở đây, câu hỏi ghi x+1 bn ghi x+2

Bình luận (0)
NH
8 tháng 2 2020 lúc 10:13

Trần Quang Trường, Lương Hồ Khánh Duy đã trả lời đúng rồi , nếu câu hỏi như bạn nói thì phép tính ko như quy luật của nó 

Bình luận (0)
 Khách vãng lai đã xóa
CN
Xem chi tiết