tìm 3 số lẻ liên tiếp đều là các số nguyên tố
1. Tìm n thuộc N để(n+3)(n+4)là một số chính phương
2. Tìm số nguyên tố p để
a)p+10 và p+20 đều là số nguyên tố
b)p+2 và p+94 đều là số nguyên tố
c)p+6;p+8;p+12;p+14 đều là số nguyên tố
3. Cho p1 bé hơn p2 là hai số nguyên tố lẻ liên tiếp
CMR:(p1+p2) :2 là hợp số
2) Vì p là số nguyên tố nên ta xét các trường hợp sau:
a) Với p = 2 thì p + 10 = 2 + 10 = 12 là hợp số (loại), tương tự với p + 20 cũng là hợp số.
Với p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố (nhận); p + 20 = 3 + 20 = 23 là số nguyên tố (nhận)
Vì p là số nguyên tố và p > 3 nên p có dạng 3k + 1; 3k + 2
Với p = 3k + 1 => p + 10 = 3k + 1 + 10 = 3k + 11
chứng minh rằng :8p-1 là số nguyên tố thì 8p+1 là hợp số
tìm p;q là số nguyên tố sao cho 7p+qvaf pq+11 đều là số nguyên tố
tìm các số nguyên tố a,b,c sao cho: 2a+3b+6c=78
tìm số nguyên tơố p sao cho các số sau đều là số nguyên tố:
a)p+2 và p+10
b) p+10 và p+20
Chứng minh rằng : 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau.
Mik đang cần gấp ! Giải chi tiết nha các bạn !
Gọi 2 số đó là n + 1 và n + 3
Đặt ƯCLN(n+1,n+3) = d
Ta có: n + 1 chia hết cho d
n + 3 cũng chia hết cho d
=> (n+3) - (n+1) chia hết cho d
=> 2 chia hết cho d
\(d\inƯ\left(2\right)=\left\{1;2\right\}\)
Mà n+1 và n+3 là số lẻ nên không chia hết cho 2.
=> d = 1
Vậy 2 số lẻ liên tiếp là số nguyên tố cùng nhau.
Gọi 2 số đó là n + 1 và n + 3
Đặt ƯCLN(n+1,n+3) = d
Ta có: n + 1 chia hết cho d
n + 3 cũng chia hết cho d
=> (n+3) - (n+1) chia hết cho d
=> 2 chia hết cho d
$d\inƯ\left(2\right)=\left\{1;2\right\}$d∈Ư(2)={1;2}
Mà n+1 và n+3 là số lẻ nên không chia hết cho 2.
=> d = 1
Vậy 2 số lẻ liên tiếp là số nguyên tố cùng nhau.
Ta gọi p và q là 2 số nguyên tố liên tiếp nếu giữa p và q ko có số nguyên tố nào.
Tìm 3 số nguyên tố liên tiếp p; q; n sao cho p2; q2; n2 cũng là số nguyên tố.
không có số nào đâu bạn vì theo khái niệm thì khi nhân một số nguyên tố với một số nguyên tố thì nó sẽ là hợp số vì khi đó nó đã có trên 2 ước rồi bạn
đúng quá đúng ko các bạn tick cho mình nhé
Ta gọi p và q là 2 số nguyên tố liên tiếp nếu giữa p và q ko có số nguyên tố nào.
Tìm 3 số nguyên tố liên tiếp p; q; n sao cho p2; q2; n2 cũng là số nguyên tố.
giả sử p<q<r
+) Nếu p=3
+) Nếu q=3
Xét số tự nhiên a không chia hết cho3 =>a=3k+1 hoặc a=3k+2 (k thuộc N*)
-với a=3k+1
-với a=3k+2
=>với a không chia hết cho 3
=>a2 không chia hết cho 3 => a2 chia 3 dư 1 (tự chứng minh)
do đó p2;q2;r2 chia 3 dư 1
=>p2+q2+r2 chia hết cho 3 mà p2+q2+r2>3
=>p2+q2+r2 là hợp số
Vậy p=3;q=5;r=7
Tìm tổng của tám số lẻ liên tiếp trong đó có 2 chữ số có 2 số, còn lại là các số có 3 chữ số.
Cho p>q là 2 số nguyên tố lẻ liên tiếp . Chứng tỏ rằng (p+q) là hợp số
biết số trung bình cộng của 3 số lẻ liên tiếp là 11.Tìm 3 số lẻ liên tiếp đó?
Số lẻ thứ hai chính là 11
Số lẻ đầu tiên là:
11+2=13
Số lẻ cuối cùng là:
11-2=9
Tổng của 3 số lẻ đó là
11 x 3 = 33
Số trung bình bình cộng của 3 số lẻ liên tiếp đó chính là số lẻ thứ hai
Vậy số lẻ thứ hai là 11
Số lẻ thứ nhất là:
11-2=9
Số lẻ thứ ba là:
11+2=13
Đáp số: Số lẻ 1: 9
Số lẻ 2: 11
Số lẻ 3: 13
k mình nha
Chúc bạn học giỏi
Mình cảm ơn bạn nhiều
3 số lẻ liên tiếp là : 9,11,13 vi 3 số này liên tiếp và cách nhau đều là 2 đơn vị
Tìm các số nguyên tố p sao cho p + 8 và 4p + 1 đều là các số nguyên tố.
Ai giúp mình với, mình đang cần gấp!
Giải bằng phương pháp đánh giá em nhé.
+ Nếu p = 2 ta có:
2 + 8 = 10 (loại)
+ Nếu p = 3 ta có:
3 + 8 = 11 (nhận)
4.3 + 1 = 13 (nhận)
+ Nếu p = 3\(k\) + 1 ta có:
p + 8 = 3\(k\) + 1 + 8 = 3\(k\) + 9 = 3(\(k+3\)) là hợp số (loại)
+ nếu p = 3\(k\) + 2 ta có:
4p + 1 = 4(3\(k\) + 2) + 1 = 12\(k\) + 9 = 3\(\left(4k+3\right)\) là hợp số loại
Vậy p = 3 là giá trị thỏa mãn đề bài
Kết luận: số nguyên tố p sao cho p + 8 và 4p + 1 đều là các số nguyên tố đó là 3